--- license: mit tags: - generated_from_trainer base_model: naver-clova-ix/donut-base datasets: - imagefolder model-index: - name: invoice_extraction_20240809_base_non_0_aug4x_retrain results: [] --- # donut-base-invoice-resize_splitbydate_roc_240401 This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description Trained from Donut base model (naver-clova-ix/donut-base) with non-type-0 invoice data with original Gregorian date instead of ROC date with Chinese characters ## Intended uses & limitations More information needed ## Training and evaluation data Train data: 1124 samples of non type 0 images with invoice date between 2024/07/01 and 2024/07/15 (original 281 samples + 3 times augmented data) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 (checkpoint-5620) ### Training results TrainOutput(global_step=2420, training_loss=1.0457300442309418, metrics={'train_runtime': 9844.8278, 'train_samples_per_second': 0.49, 'train_steps_per_second': 0.246, 'total_flos': 6.47612717723136e+18, 'train_loss': 1.0457300442309418, 'epoch': 20.0}) ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.14.5 - Tokenizers 0.15.2