File size: 1,335 Bytes
e3ef0b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
# Knowledge-Rich Self-Supervision (KRISS) for Biomedical Entity Linking
Usage code for the entity linking approach described in the following paper:
```bibtex
@article{kriss,
author = {Sheng Zhang, Hao Cheng, Shikhar Vashishth, Cliff Wong, Jinfeng Xiao, Xiaodong Liu, Tristan Naumann, Jianfeng Gao, Hoifung Poon},
title = {Knowledge-Rich Self-Supervision for Biomedical Entity Linking},
year = {2021},
url = {https://arxiv.org/abs/2112.07887},
eprinttype = {arXiv},
eprint = {2112.07887},
}
```
[https://arxiv.org/pdf/2112.07887.pdf](https://arxiv.org/pdf/2112.07887.pdf)
## Usage of KRISS for Entity Linking
Here, we use the [MedMentions](https://github.com/chanzuckerberg/MedMentions) data to show you how to 1) generate prototype embeddings, and 2) run entity linking.
(We are currently unable to release the self-supervised mention examples, because they requires UMLS and PubMed licenses.)
### 1. Create conda environment and install requirements
```bash
conda create -n kriss -y python=3.8 && conda activate kriss
pip install -r requirements.txt
```
### 2. Download the MedMentions dataset
```bash
git clone https://github.com/chanzuckerberg/MedMentions.git
```
### 3. Generate prototype embeddings
```bash
python generate_prototypes.py
```
### 4. Run entity linking
```bash
python run_entity_linking.py
``` |