Ozan Oktay
commited on
Commit
·
1cb4998
1
Parent(s):
2194015
add model
Browse files- config.json +30 -0
- configuration_cxrbert.py +26 -0
- modeling_cxrbert.py +129 -0
- pytorch_model.bin +3 -0
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/BiomedVLP-BioViL-T",
|
3 |
+
"architectures": [
|
4 |
+
"CXRBertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.25,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoModel": "modeling_cxrbert.CXRBertModel"
|
9 |
+
},
|
10 |
+
"classifier_dropout": null,
|
11 |
+
"gradient_checkpointing": false,
|
12 |
+
"hidden_act": "gelu",
|
13 |
+
"hidden_dropout_prob": 0.25,
|
14 |
+
"hidden_size": 768,
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 3072,
|
17 |
+
"layer_norm_eps": 1e-12,
|
18 |
+
"max_position_embeddings": 512,
|
19 |
+
"model_type": "bert",
|
20 |
+
"num_attention_heads": 12,
|
21 |
+
"num_hidden_layers": 12,
|
22 |
+
"pad_token_id": 0,
|
23 |
+
"position_embedding_type": "absolute",
|
24 |
+
"projection_size": 128,
|
25 |
+
"torch_dtype": "float32",
|
26 |
+
"transformers_version": "4.17.0",
|
27 |
+
"type_vocab_size": 2,
|
28 |
+
"use_cache": true,
|
29 |
+
"vocab_size": 30522
|
30 |
+
}
|
configuration_cxrbert.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------------
|
2 |
+
# Copyright (c) Microsoft Corporation. All rights reserved.
|
3 |
+
# Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
|
4 |
+
# ------------------------------------------------------------------------------------------
|
5 |
+
|
6 |
+
from typing import Any
|
7 |
+
|
8 |
+
from transformers import BertConfig, BertTokenizer
|
9 |
+
|
10 |
+
|
11 |
+
class CXRBertConfig(BertConfig):
|
12 |
+
"""
|
13 |
+
Config class for CXR-BERT model.
|
14 |
+
:param projection_size: Dimensionality of the joint latent space.
|
15 |
+
"""
|
16 |
+
|
17 |
+
model_type = "cxr-bert"
|
18 |
+
|
19 |
+
def __init__(self, projection_size: int = 128, **kwargs: Any) -> None:
|
20 |
+
super().__init__(**kwargs)
|
21 |
+
self.projection_size = projection_size
|
22 |
+
|
23 |
+
|
24 |
+
class CXRBertTokenizer(BertTokenizer):
|
25 |
+
def __init__(self, **kwargs: Any) -> None:
|
26 |
+
super().__init__(**kwargs)
|
modeling_cxrbert.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------------
|
2 |
+
# Copyright (c) Microsoft Corporation. All rights reserved.
|
3 |
+
# Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
|
4 |
+
# ------------------------------------------------------------------------------------------
|
5 |
+
|
6 |
+
from typing import Any, Optional, Tuple, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from torch import nn
|
11 |
+
from torch import Tensor as T
|
12 |
+
from transformers import BertForMaskedLM
|
13 |
+
from transformers.modeling_outputs import ModelOutput
|
14 |
+
|
15 |
+
from .configuration_cxrbert import CXRBertConfig
|
16 |
+
|
17 |
+
BERTTupleOutput = Tuple[T, T, T, T, T]
|
18 |
+
|
19 |
+
class CXRBertOutput(ModelOutput):
|
20 |
+
last_hidden_state: torch.FloatTensor
|
21 |
+
logits: torch.FloatTensor
|
22 |
+
cls_projected_embedding: Optional[torch.FloatTensor] = None
|
23 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
24 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
25 |
+
|
26 |
+
|
27 |
+
class BertProjectionHead(nn.Module):
|
28 |
+
'''
|
29 |
+
Projection head to be used with BERT CLS token, it's similar to `BertPredictionHeadTransform` in HuggingFace library.
|
30 |
+
:param config: CXRBertConfig
|
31 |
+
:return: (batch_size, output_size)
|
32 |
+
'''
|
33 |
+
def __init__(self, config: CXRBertConfig) -> None:
|
34 |
+
super().__init__()
|
35 |
+
self.dense_to_hidden = nn.Linear(config.hidden_size, config.projection_size)
|
36 |
+
self.transform_act_fn = nn.functional.gelu
|
37 |
+
self.LayerNorm = nn.LayerNorm(config.projection_size, eps=1e-12)
|
38 |
+
self.dense_to_output = nn.Linear(config.projection_size, config.projection_size)
|
39 |
+
|
40 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
41 |
+
hidden_states = self.dense_to_hidden(hidden_states)
|
42 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
43 |
+
hidden_states = self.LayerNorm(hidden_states)
|
44 |
+
hidden_states = self.dense_to_output(hidden_states)
|
45 |
+
|
46 |
+
return hidden_states
|
47 |
+
|
48 |
+
|
49 |
+
class CXRBertModel(BertForMaskedLM):
|
50 |
+
"""
|
51 |
+
Implements the CXR-BERT model outlined in the manuscript:
|
52 |
+
Boecking et al. "Making the Most of Text Semantics to Improve Biomedical Vision-Language Processing", 2022
|
53 |
+
https://arxiv.org/abs/2204.09817
|
54 |
+
|
55 |
+
Extends the HuggingFace BertForMaskedLM model by adding a separate projection head. The projection "[CLS]" token is used to align
|
56 |
+
the latent vectors of image and text modalities.
|
57 |
+
"""
|
58 |
+
|
59 |
+
config_class = CXRBertConfig
|
60 |
+
|
61 |
+
def __init__(self, config: CXRBertConfig):
|
62 |
+
super().__init__(config)
|
63 |
+
|
64 |
+
self.cls_projection_head = BertProjectionHead(config)
|
65 |
+
self.init_weights()
|
66 |
+
|
67 |
+
def forward(
|
68 |
+
self,
|
69 |
+
input_ids: torch.Tensor,
|
70 |
+
attention_mask: torch.Tensor,
|
71 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
72 |
+
position_ids: Optional[torch.Tensor] = None,
|
73 |
+
head_mask: Optional[torch.Tensor] = None,
|
74 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
75 |
+
output_attentions: Optional[bool] = None,
|
76 |
+
output_hidden_states: Optional[bool] = None,
|
77 |
+
output_cls_projected_embedding: Optional[bool] = None,
|
78 |
+
return_dict: Optional[bool] = None,
|
79 |
+
**kwargs: Any
|
80 |
+
) -> Union[BERTTupleOutput, CXRBertOutput]:
|
81 |
+
|
82 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
83 |
+
|
84 |
+
bert_for_masked_lm_output = super().forward(input_ids=input_ids,
|
85 |
+
attention_mask=attention_mask,
|
86 |
+
token_type_ids=token_type_ids,
|
87 |
+
position_ids=position_ids,
|
88 |
+
head_mask=head_mask,
|
89 |
+
inputs_embeds=inputs_embeds,
|
90 |
+
output_attentions=output_attentions,
|
91 |
+
output_hidden_states=True,
|
92 |
+
return_dict=True)
|
93 |
+
|
94 |
+
last_hidden_state = bert_for_masked_lm_output.hidden_states[-1]
|
95 |
+
cls_projected_embedding = self.cls_projection_head(last_hidden_state[:, 0, :]) if output_cls_projected_embedding else None
|
96 |
+
|
97 |
+
if return_dict:
|
98 |
+
return CXRBertOutput(
|
99 |
+
last_hidden_state=last_hidden_state,
|
100 |
+
logits=bert_for_masked_lm_output.logits,
|
101 |
+
cls_projected_embedding=cls_projected_embedding,
|
102 |
+
hidden_states=bert_for_masked_lm_output.hidden_states if output_hidden_states else None,
|
103 |
+
attentions=bert_for_masked_lm_output.attentions,
|
104 |
+
)
|
105 |
+
else:
|
106 |
+
return (
|
107 |
+
last_hidden_state,
|
108 |
+
bert_for_masked_lm_output.logits,
|
109 |
+
cls_projected_embedding,
|
110 |
+
bert_for_masked_lm_output.hidden_states,
|
111 |
+
bert_for_masked_lm_output.attentions,)
|
112 |
+
|
113 |
+
def get_projected_text_embeddings(self, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
|
114 |
+
"""
|
115 |
+
Returns l2-normalised projected cls token embeddings for the given input token ids and attention mask.
|
116 |
+
The joint latent space is trained using a contrastive objective between image and text data modalities.
|
117 |
+
|
118 |
+
:param input_ids: (batch_size, sequence_length)
|
119 |
+
:param attention_mask: (batch_size, sequence_length)
|
120 |
+
:return: (batch_size, projection_size)
|
121 |
+
"""
|
122 |
+
|
123 |
+
outputs = self.forward(input_ids=input_ids, attention_mask=attention_mask,
|
124 |
+
output_cls_projected_embedding=True, return_dict=True)
|
125 |
+
assert isinstance(outputs, CXRBertOutput)
|
126 |
+
|
127 |
+
assert outputs.cls_projected_embedding is not None
|
128 |
+
normalized_cls_embedding = F.normalize(outputs.cls_projected_embedding, dim=1)
|
129 |
+
return normalized_cls_embedding
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d86a8d760eaa09c9a55d57cc6f6bb01b0cbccb8b827fc775a79f37a8fbda76c
|
3 |
+
size 440966107
|