Add task_prefix_attention_mask argument to _merge_input_ids_with_image_features for better padding handling
c69c410
verified
# coding=utf-8 | |
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" PyTorch Florence-2 model.""" | |
from dataclasses import dataclass | |
from typing import List, Optional, Tuple, Union | |
import math | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint as checkpoint | |
from torch.nn import CrossEntropyLoss | |
from collections import OrderedDict | |
from einops import rearrange | |
from timm.models.layers import DropPath, trunc_normal_ | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.utils import ( | |
ModelOutput, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
is_flash_attn_2_available, | |
logging, | |
replace_return_docstrings, | |
is_flash_attn_2_available, | |
is_flash_attn_greater_or_equal_2_10, | |
) | |
from .configuration_florence2 import Florence2Config | |
from .configuration_florence2 import Florence2LanguageConfig | |
from .configuration_florence2 import Florence2VisionConfig | |
from transformers.activations import ACT2FN | |
from transformers.modeling_attn_mask_utils import ( | |
_prepare_4d_attention_mask, | |
_prepare_4d_attention_mask_for_sdpa, | |
_prepare_4d_causal_attention_mask, | |
_prepare_4d_causal_attention_mask_for_sdpa, | |
) | |
from transformers.modeling_outputs import ( | |
BaseModelOutput, | |
BaseModelOutputWithPastAndCrossAttentions, | |
Seq2SeqLMOutput, | |
Seq2SeqModelOutput, | |
) | |
if is_flash_attn_2_available(): | |
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa | |
logger = logging.get_logger(__name__) | |
_CONFIG_FOR_DOC = "Florence2Config" | |
class LearnedAbsolutePositionEmbedding2D(nn.Module): | |
""" | |
This module learns positional embeddings up to a fixed maximum size. | |
""" | |
def __init__(self, embedding_dim=256, num_pos=50): | |
super().__init__() | |
self.row_embeddings = nn.Embedding(num_pos, embedding_dim // 2) | |
self.column_embeddings = nn.Embedding(num_pos, embedding_dim - (embedding_dim // 2)) | |
def forward(self, pixel_values): | |
""" | |
pixel_values: (batch_size, height, width, num_channels) | |
returns: (batch_size, height, width, embedding_dim * 2) | |
""" | |
if len(pixel_values.shape) != 4: | |
raise ValueError('pixel_values must be a 4D tensor') | |
height, width = pixel_values.shape[1:3] | |
width_values = torch.arange(width, device=pixel_values.device) | |
height_values = torch.arange(height, device=pixel_values.device) | |
x_emb = self.column_embeddings(width_values) | |
y_emb = self.row_embeddings(height_values) | |
# (height, width, embedding_dim * 2) | |
pos = torch.cat([x_emb.unsqueeze(0).repeat(height, 1, 1), y_emb.unsqueeze(1).repeat(1, width, 1)], dim=-1) | |
# (embedding_dim * 2, height, width) | |
pos = pos.permute(2, 0, 1) | |
pos = pos.unsqueeze(0) | |
# (batch_size, embedding_dim * 2, height, width) | |
pos = pos.repeat(pixel_values.shape[0], 1, 1, 1) | |
# (batch_size, height, width, embedding_dim * 2) | |
pos = pos.permute(0, 2, 3, 1) | |
return pos | |
class PositionalEmbeddingCosine1D(nn.Module): | |
""" | |
This class implements a very simple positional encoding. It follows closely | |
the encoder from the link below: | |
https://pytorch.org/tutorials/beginner/translation_transformer.html | |
Args: | |
embed_dim: The dimension of the embeddings. | |
dropout_prob: The dropout probability. | |
max_seq_len: The maximum length to precompute the positional encodings. | |
""" | |
def __init__( | |
self, | |
embed_dim: int = 512, | |
max_seq_len: int = 1024) -> None: | |
super(PositionalEmbeddingCosine1D, self).__init__() | |
self.embed_dim = embed_dim | |
self.max_seq_len = max_seq_len | |
# Generate the sinusoidal arrays. | |
factor = math.log(10000) | |
denominator = torch.exp( | |
-factor * torch.arange(0, self.embed_dim, 2) / self.embed_dim) | |
# Matrix where rows correspond to a positional embedding as a function | |
# of the position index (i.e., the row index). | |
frequencies = \ | |
torch.arange(0, self.max_seq_len) \ | |
.reshape(self.max_seq_len, 1) * denominator | |
pos_idx_to_embed = torch.zeros((self.max_seq_len, self.embed_dim)) | |
# Populate uneven entries. | |
pos_idx_to_embed[:, 0::2] = torch.sin(frequencies) | |
pos_idx_to_embed[:, 1::2] = torch.cos(frequencies) | |
# Save the positional embeddings in a constant buffer. | |
self.register_buffer("pos_idx_to_embed", pos_idx_to_embed) | |
def forward(self, seq_embeds: torch.Tensor) -> torch.Tensor: | |
""" | |
Args: | |
seq_embeds: The sequence embeddings in order. Allowed size: | |
1. [T, D], where T is the length of the sequence, and D is the | |
frame embedding dimension. | |
2. [B, T, D], where B is the batch size and T and D are the | |
same as above. | |
Returns a tensor of with the same dimensions as the input: i.e., | |
[1, T, D] or [T, D]. | |
""" | |
shape_len = len(seq_embeds.shape) | |
assert 2 <= shape_len <= 3 | |
len_seq = seq_embeds.size(-2) | |
assert len_seq <= self.max_seq_len | |
pos_embeds = self.pos_idx_to_embed[0:seq_embeds.size(-2), :] | |
# Adapt pre-computed positional embeddings to the input. | |
if shape_len == 3: | |
pos_embeds = pos_embeds.view( | |
(1, pos_embeds.size(0), pos_embeds.size(1))) | |
return pos_embeds | |
class LearnedAbsolutePositionEmbedding1D(nn.Module): | |
""" | |
Learnable absolute positional embeddings for 1D sequences. | |
Args: | |
embed_dim: The dimension of the embeddings. | |
max_seq_len: The maximum length to precompute the positional encodings. | |
""" | |
def __init__( | |
self, | |
embedding_dim: int = 512, | |
num_pos: int = 1024) -> None: | |
super(LearnedAbsolutePositionEmbedding1D, self).__init__() | |
self.embeddings = nn.Embedding(num_pos, embedding_dim) | |
self.num_pos = num_pos | |
def forward(self, seq_embeds: torch.Tensor) -> torch.Tensor: | |
""" | |
Args: | |
seq_embeds: The sequence embeddings in order. Allowed size: | |
1. [T, D], where T is the length of the sequence, and D is the | |
frame embedding dimension. | |
2. [B, T, D], where B is the batch size and T and D are the | |
same as above. | |
Returns a tensor of with the same dimensions as the input: i.e., | |
[1, T, D] or [T, D]. | |
""" | |
shape_len = len(seq_embeds.shape) | |
assert 2 <= shape_len <= 3 | |
len_seq = seq_embeds.size(-2) | |
assert len_seq <= self.num_pos | |
# [T, D] | |
pos_embeds = self.embeddings(torch.arange(len_seq).to(seq_embeds.device)) | |
# Adapt pre-computed positional embeddings to the input. | |
if shape_len == 3: | |
pos_embeds = pos_embeds.view( | |
(1, pos_embeds.size(0), pos_embeds.size(1))) | |
return pos_embeds | |
class MySequential(nn.Sequential): | |
def forward(self, *inputs): | |
for module in self._modules.values(): | |
if type(inputs) == tuple: | |
inputs = module(*inputs) | |
else: | |
inputs = module(inputs) | |
return inputs | |
class PreNorm(nn.Module): | |
def __init__(self, norm, fn, drop_path=None): | |
super().__init__() | |
self.norm = norm | |
self.fn = fn | |
self.drop_path = drop_path | |
def forward(self, x, *args, **kwargs): | |
shortcut = x | |
if self.norm != None: | |
x, size = self.fn(self.norm(x), *args, **kwargs) | |
else: | |
x, size = self.fn(x, *args, **kwargs) | |
if self.drop_path: | |
x = self.drop_path(x) | |
x = shortcut + x | |
return x, size | |
class Mlp(nn.Module): | |
def __init__( | |
self, | |
in_features, | |
hidden_features=None, | |
out_features=None, | |
act_layer=nn.GELU, | |
): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.net = nn.Sequential(OrderedDict([ | |
("fc1", nn.Linear(in_features, hidden_features)), | |
("act", act_layer()), | |
("fc2", nn.Linear(hidden_features, out_features)) | |
])) | |
def forward(self, x, size): | |
return self.net(x), size | |
class DepthWiseConv2d(nn.Module): | |
def __init__( | |
self, | |
dim_in, | |
kernel_size, | |
padding, | |
stride, | |
bias=True, | |
): | |
super().__init__() | |
self.dw = nn.Conv2d( | |
dim_in, dim_in, | |
kernel_size=kernel_size, | |
padding=padding, | |
groups=dim_in, | |
stride=stride, | |
bias=bias | |
) | |
def forward(self, x, size): | |
B, N, C = x.shape | |
H, W = size | |
assert N == H * W | |
x = self.dw(x.transpose(1, 2).view(B, C, H, W)) | |
size = (x.size(-2), x.size(-1)) | |
x = x.flatten(2).transpose(1, 2) | |
return x, size | |
class ConvEmbed(nn.Module): | |
""" Image to Patch Embedding | |
""" | |
def __init__( | |
self, | |
patch_size=7, | |
in_chans=3, | |
embed_dim=64, | |
stride=4, | |
padding=2, | |
norm_layer=None, | |
pre_norm=True | |
): | |
super().__init__() | |
self.patch_size = patch_size | |
self.proj = nn.Conv2d( | |
in_chans, embed_dim, | |
kernel_size=patch_size, | |
stride=stride, | |
padding=padding | |
) | |
dim_norm = in_chans if pre_norm else embed_dim | |
self.norm = norm_layer(dim_norm) if norm_layer else None | |
self.pre_norm = pre_norm | |
def forward(self, x, size): | |
H, W = size | |
if len(x.size()) == 3: | |
if self.norm and self.pre_norm: | |
x = self.norm(x) | |
x = rearrange( | |
x, 'b (h w) c -> b c h w', | |
h=H, w=W | |
) | |
x = self.proj(x) | |
_, _, H, W = x.shape | |
x = rearrange(x, 'b c h w -> b (h w) c') | |
if self.norm and not self.pre_norm: | |
x = self.norm(x) | |
return x, (H, W) | |
class ChannelAttention(nn.Module): | |
def __init__(self, dim, groups=8, qkv_bias=True): | |
super().__init__() | |
self.groups = groups | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.proj = nn.Linear(dim, dim) | |
def forward(self, x, size): | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.groups, C // self.groups).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] | |
q = q * (float(N) ** -0.5) | |
attention = q.transpose(-1, -2) @ k | |
attention = attention.softmax(dim=-1) | |
x = (attention @ v.transpose(-1, -2)).transpose(-1, -2) | |
x = x.transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
return x, size | |
class ChannelBlock(nn.Module): | |
def __init__(self, dim, groups, mlp_ratio=4., qkv_bias=True, | |
drop_path_rate=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, | |
conv_at_attn=True, conv_at_ffn=True): | |
super().__init__() | |
drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() | |
self.conv1 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_attn else None | |
self.channel_attn = PreNorm( | |
norm_layer(dim), | |
ChannelAttention(dim, groups=groups, qkv_bias=qkv_bias), | |
drop_path | |
) | |
self.conv2 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_ffn else None | |
self.ffn = PreNorm( | |
norm_layer(dim), | |
Mlp(in_features=dim, hidden_features=int(dim*mlp_ratio), act_layer=act_layer), | |
drop_path | |
) | |
def forward(self, x, size): | |
if self.conv1: | |
x, size = self.conv1(x, size) | |
x, size = self.channel_attn(x, size) | |
if self.conv2: | |
x, size = self.conv2(x, size) | |
x, size = self.ffn(x, size) | |
return x, size | |
def window_partition(x, window_size: int): | |
B, H, W, C = x.shape | |
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) | |
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) | |
return windows | |
def window_reverse(windows, batch_size: int, window_size: int, H: int, W: int): | |
B = batch_size | |
# this will cause onnx conversion failed for dynamic axis, because treated as constant | |
# int(windows.shape[0] / (H * W / window_size / window_size)) | |
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) | |
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) | |
return x | |
class WindowAttention(nn.Module): | |
def __init__(self, dim, num_heads, window_size, qkv_bias=True): | |
super().__init__() | |
self.dim = dim | |
self.window_size = window_size | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = float(head_dim) ** -0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.proj = nn.Linear(dim, dim) | |
self.softmax = nn.Softmax(dim=-1) | |
def forward(self, x, size): | |
H, W = size | |
B, L, C = x.shape | |
assert L == H * W, "input feature has wrong size" | |
x = x.view(B, H, W, C) | |
pad_l = pad_t = 0 | |
pad_r = (self.window_size - W % self.window_size) % self.window_size | |
pad_b = (self.window_size - H % self.window_size) % self.window_size | |
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) | |
_, Hp, Wp, _ = x.shape | |
x = window_partition(x, self.window_size) | |
x = x.view(-1, self.window_size * self.window_size, C) | |
# W-MSA/SW-MSA | |
# attn_windows = self.attn(x_windows) | |
B_, N, C = x.shape | |
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] | |
q = q * self.scale | |
attn = (q @ k.transpose(-2, -1)) | |
attn = self.softmax(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B_, N, C) | |
x = self.proj(x) | |
# merge windows | |
x = x.view( | |
-1, self.window_size, self.window_size, C | |
) | |
x = window_reverse(x, B, self.window_size, Hp, Wp) | |
if pad_r > 0 or pad_b > 0: | |
x = x[:, :H, :W, :].contiguous() | |
x = x.view(B, H * W, C) | |
return x, size | |
class SpatialBlock(nn.Module): | |
def __init__(self, dim, num_heads, window_size, | |
mlp_ratio=4., qkv_bias=True, drop_path_rate=0., act_layer=nn.GELU, | |
norm_layer=nn.LayerNorm, conv_at_attn=True, conv_at_ffn=True): | |
super().__init__() | |
drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() | |
self.conv1 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_attn else None | |
self.window_attn = PreNorm( | |
norm_layer(dim), | |
WindowAttention(dim, num_heads, window_size, qkv_bias=qkv_bias), | |
drop_path | |
) | |
self.conv2 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_ffn else None | |
self.ffn = PreNorm( | |
norm_layer(dim), | |
Mlp(in_features=dim, hidden_features=int(dim*mlp_ratio), act_layer=act_layer), | |
drop_path | |
) | |
def forward(self, x, size): | |
if self.conv1: | |
x, size = self.conv1(x, size) | |
x, size = self.window_attn(x, size) | |
if self.conv2: | |
x, size = self.conv2(x, size) | |
x, size = self.ffn(x, size) | |
return x, size | |
class DaViT(nn.Module): | |
""" DaViT: Dual-Attention Transformer | |
Args: | |
in_chans (int): Number of input image channels. Default: 3. | |
num_classes (int): Number of classes for classification head. Default: 1000. | |
patch_size (tuple(int)): Patch size of convolution in different stages. Default: (7, 2, 2, 2). | |
patch_stride (tuple(int)): Patch stride of convolution in different stages. Default: (4, 2, 2, 2). | |
patch_padding (tuple(int)): Patch padding of convolution in different stages. Default: (3, 0, 0, 0). | |
patch_prenorm (tuple(bool)): If True, perform norm before convlution layer. Default: (True, False, False, False). | |
embed_dims (tuple(int)): Patch embedding dimension in different stages. Default: (64, 128, 192, 256). | |
num_heads (tuple(int)): Number of spatial attention heads in different stages. Default: (4, 8, 12, 16). | |
num_groups (tuple(int)): Number of channel groups in different stages. Default: (4, 8, 12, 16). | |
window_size (int): Window size. Default: 7. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. | |
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True. | |
drop_path_rate (float): Stochastic depth rate. Default: 0.1. | |
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. | |
enable_checkpoint (bool): If True, enable checkpointing. Default: False. | |
conv_at_attn (bool): If True, performe depthwise convolution before attention layer. Default: True. | |
conv_at_ffn (bool): If True, performe depthwise convolution before ffn layer. Default: True. | |
""" | |
def __init__( | |
self, | |
in_chans=3, | |
num_classes=1000, | |
depths=(1, 1, 3, 1), | |
patch_size=(7, 2, 2, 2), | |
patch_stride=(4, 2, 2, 2), | |
patch_padding=(3, 0, 0, 0), | |
patch_prenorm=(False, False, False, False), | |
embed_dims=(64, 128, 192, 256), | |
num_heads=(3, 6, 12, 24), | |
num_groups=(3, 6, 12, 24), | |
window_size=7, | |
mlp_ratio=4., | |
qkv_bias=True, | |
drop_path_rate=0.1, | |
norm_layer=nn.LayerNorm, | |
enable_checkpoint=False, | |
conv_at_attn=True, | |
conv_at_ffn=True, | |
): | |
super().__init__() | |
self.num_classes = num_classes | |
self.embed_dims = embed_dims | |
self.num_heads = num_heads | |
self.num_groups = num_groups | |
self.num_stages = len(self.embed_dims) | |
self.enable_checkpoint = enable_checkpoint | |
assert self.num_stages == len(self.num_heads) == len(self.num_groups) | |
num_stages = len(embed_dims) | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)*2)] | |
depth_offset = 0 | |
convs = [] | |
blocks = [] | |
for i in range(num_stages): | |
conv_embed = ConvEmbed( | |
patch_size=patch_size[i], | |
stride=patch_stride[i], | |
padding=patch_padding[i], | |
in_chans=in_chans if i == 0 else self.embed_dims[i - 1], | |
embed_dim=self.embed_dims[i], | |
norm_layer=norm_layer, | |
pre_norm=patch_prenorm[i] | |
) | |
convs.append(conv_embed) | |
block = MySequential( | |
*[ | |
MySequential(OrderedDict([ | |
( | |
'spatial_block', SpatialBlock( | |
embed_dims[i], | |
num_heads[i], | |
window_size, | |
drop_path_rate=dpr[depth_offset+j*2], | |
qkv_bias=qkv_bias, | |
mlp_ratio=mlp_ratio, | |
conv_at_attn=conv_at_attn, | |
conv_at_ffn=conv_at_ffn, | |
) | |
), | |
( | |
'channel_block', ChannelBlock( | |
embed_dims[i], | |
num_groups[i], | |
drop_path_rate=dpr[depth_offset+j*2+1], | |
qkv_bias=qkv_bias, | |
mlp_ratio=mlp_ratio, | |
conv_at_attn=conv_at_attn, | |
conv_at_ffn=conv_at_ffn, | |
) | |
) | |
])) for j in range(depths[i]) | |
] | |
) | |
blocks.append(block) | |
depth_offset += depths[i]*2 | |
self.convs = nn.ModuleList(convs) | |
self.blocks = nn.ModuleList(blocks) | |
self.norms = norm_layer(self.embed_dims[-1]) | |
self.avgpool = nn.AdaptiveAvgPool1d(1) | |
self.head = nn.Linear(self.embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity() | |
self.apply(self._init_weights) | |
def dim_out(self): | |
return self.embed_dims[-1] | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=0.02) | |
if m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.Conv2d): | |
nn.init.normal_(m.weight, std=0.02) | |
for name, _ in m.named_parameters(): | |
if name in ['bias']: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.weight, 1.0) | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.BatchNorm2d): | |
nn.init.constant_(m.weight, 1.0) | |
nn.init.constant_(m.bias, 0) | |
def forward_features_unpool(self, x): | |
""" | |
forward until avg pooling | |
Args: | |
x (_type_): input image tensor | |
""" | |
input_size = (x.size(2), x.size(3)) | |
for conv, block in zip(self.convs, self.blocks): | |
x, input_size = conv(x, input_size) | |
if self.enable_checkpoint: | |
x, input_size = checkpoint.checkpoint(block, x, input_size) | |
else: | |
x, input_size = block(x, input_size) | |
return x | |
def forward_features(self, x): | |
x = self.forward_features_unpool(x) | |
# (batch_size, num_tokens, token_dim) | |
x = self.avgpool(x.transpose(1, 2)) | |
# (batch_size, 1, num_tokens) | |
x = torch.flatten(x, 1) | |
x = self.norms(x) | |
return x | |
def forward(self, x): | |
x = self.forward_features(x) | |
x = self.head(x) | |
return x | |
def from_config(cls, config): | |
return cls( | |
depths=config.depths, | |
embed_dims=config.dim_embed, | |
num_heads=config.num_heads, | |
num_groups=config.num_groups, | |
patch_size=config.patch_size, | |
patch_stride=config.patch_stride, | |
patch_padding=config.patch_padding, | |
patch_prenorm=config.patch_prenorm, | |
drop_path_rate=config.drop_path_rate, | |
window_size=config.window_size, | |
) | |
if is_flash_attn_2_available(): | |
from flash_attn import flash_attn_func, flash_attn_varlen_func | |
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa | |
# Copied from transformers.models.llama.modeling_llama._get_unpad_data | |
def _get_unpad_data(attention_mask): | |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | |
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | |
max_seqlen_in_batch = seqlens_in_batch.max().item() | |
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) | |
return ( | |
indices, | |
cu_seqlens, | |
max_seqlen_in_batch, | |
) | |
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): | |
""" | |
Shift input ids one token to the right. | |
""" | |
shifted_input_ids = input_ids.new_zeros(input_ids.shape) | |
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() | |
shifted_input_ids[:, 0] = decoder_start_token_id | |
if pad_token_id is None: | |
raise ValueError("self.model.config.pad_token_id has to be defined.") | |
# replace possible -100 values in labels by `pad_token_id` | |
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) | |
return shifted_input_ids | |
class Florence2LearnedPositionalEmbedding(nn.Embedding): | |
""" | |
This module learns positional embeddings up to a fixed maximum size. | |
""" | |
def __init__(self, num_embeddings: int, embedding_dim: int): | |
# Florence2 is set up so that if padding_idx is specified then offset the embedding ids by 2 | |
# and adjust num_embeddings appropriately. Other models don't have this hack | |
self.offset = 2 | |
super().__init__(num_embeddings + self.offset, embedding_dim) | |
def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0): | |
"""`input_ids' shape is expected to be [bsz x seqlen].""" | |
bsz, seq_len = input_ids.shape[:2] | |
positions = torch.arange( | |
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device | |
).expand(bsz, -1) | |
return super().forward(positions + self.offset) | |
class Florence2ScaledWordEmbedding(nn.Embedding): | |
""" | |
This module overrides nn.Embeddings' forward by multiplying with embeddings scale. | |
""" | |
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: Optional[float] = 1.0): | |
super().__init__(num_embeddings, embedding_dim, padding_idx) | |
self.embed_scale = embed_scale | |
def forward(self, input_ids: torch.Tensor): | |
return super().forward(input_ids) * self.embed_scale | |
class Florence2Attention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__( | |
self, | |
embed_dim: int, | |
num_heads: int, | |
dropout: float = 0.0, | |
is_decoder: bool = False, | |
bias: bool = True, | |
is_causal: bool = False, | |
config: Optional[Florence2LanguageConfig] = None, | |
): | |
super().__init__() | |
self.embed_dim = embed_dim | |
self.num_heads = num_heads | |
self.dropout = dropout | |
self.head_dim = embed_dim // num_heads | |
self.config = config | |
if (self.head_dim * num_heads) != self.embed_dim: | |
raise ValueError( | |
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" | |
f" and `num_heads`: {num_heads})." | |
) | |
self.scaling = self.head_dim**-0.5 | |
self.is_decoder = is_decoder | |
self.is_causal = is_causal | |
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
key_value_states: Optional[torch.Tensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
layer_head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
"""Input shape: Batch x Time x Channel""" | |
# if key_value_states are provided this layer is used as a cross-attention layer | |
# for the decoder | |
is_cross_attention = key_value_states is not None | |
bsz, tgt_len, _ = hidden_states.size() | |
# get query proj | |
query_states = self.q_proj(hidden_states) * self.scaling | |
# get key, value proj | |
# `past_key_value[0].shape[2] == key_value_states.shape[1]` | |
# is checking that the `sequence_length` of the `past_key_value` is the same as | |
# the provided `key_value_states` to support prefix tuning | |
if ( | |
is_cross_attention | |
and past_key_value is not None | |
and past_key_value[0].shape[2] == key_value_states.shape[1] | |
): | |
# reuse k,v, cross_attentions | |
key_states = past_key_value[0] | |
value_states = past_key_value[1] | |
elif is_cross_attention: | |
# cross_attentions | |
key_states = self._shape(self.k_proj(key_value_states), -1, bsz) | |
value_states = self._shape(self.v_proj(key_value_states), -1, bsz) | |
elif past_key_value is not None: | |
# reuse k, v, self_attention | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
else: | |
# self_attention | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
if self.is_decoder: | |
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. | |
# Further calls to cross_attention layer can then reuse all cross-attention | |
# key/value_states (first "if" case) | |
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of | |
# all previous decoder key/value_states. Further calls to uni-directional self-attention | |
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) | |
# if encoder bi-directional self-attention `past_key_value` is always `None` | |
past_key_value = (key_states, value_states) | |
proj_shape = (bsz * self.num_heads, -1, self.head_dim) | |
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) | |
key_states = key_states.reshape(*proj_shape) | |
value_states = value_states.reshape(*proj_shape) | |
src_len = key_states.size(1) | |
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) | |
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): | |
raise ValueError( | |
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" | |
f" {attn_weights.size()}" | |
) | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, tgt_len, src_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" | |
) | |
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
if layer_head_mask is not None: | |
if layer_head_mask.size() != (self.num_heads,): | |
raise ValueError( | |
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" | |
f" {layer_head_mask.size()}" | |
) | |
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
if output_attentions: | |
# this operation is a bit awkward, but it's required to | |
# make sure that attn_weights keeps its gradient. | |
# In order to do so, attn_weights have to be reshaped | |
# twice and have to be reused in the following | |
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) | |
else: | |
attn_weights_reshaped = None | |
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
attn_output = torch.bmm(attn_probs, value_states) | |
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) | |
attn_output = attn_output.transpose(1, 2) | |
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be | |
# partitioned across GPUs when using tensor-parallelism. | |
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, attn_weights_reshaped, past_key_value | |
class Florence2FlashAttention2(Florence2Attention): | |
""" | |
Florence2 flash attention module. This module inherits from `Florence2Attention` as the weights of the module stays | |
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | |
flash attention and deal with padding tokens in case the input contains any of them. | |
""" | |
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. | |
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. | |
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). | |
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | |
def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
key_value_states: Optional[torch.Tensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
layer_head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
# Florence2FlashAttention2 attention does not support output_attentions | |
if output_attentions: | |
raise ValueError("Florence2FlashAttention2 attention does not support output_attentions") | |
# if key_value_states are provided this layer is used as a cross-attention layer | |
# for the decoder | |
is_cross_attention = key_value_states is not None | |
bsz, q_len, _ = hidden_states.size() | |
# get query proj | |
query_states = self._reshape(self.q_proj(hidden_states), -1, bsz) | |
# get key, value proj | |
# `past_key_value[0].shape[2] == key_value_states.shape[1]` | |
# is checking that the `sequence_length` of the `past_key_value` is the same as | |
# the provided `key_value_states` to support prefix tuning | |
if ( | |
is_cross_attention | |
and past_key_value is not None | |
and past_key_value[0].shape[2] == key_value_states.shape[1] | |
): | |
# reuse k,v, cross_attentions | |
key_states = past_key_value[0].transpose(1, 2) | |
value_states = past_key_value[1].transpose(1, 2) | |
elif is_cross_attention: | |
# cross_attentions | |
key_states = self._reshape(self.k_proj(key_value_states), -1, bsz) | |
value_states = self._reshape(self.v_proj(key_value_states), -1, bsz) | |
elif past_key_value is not None: | |
# reuse k, v, self_attention | |
key_states = self._reshape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._reshape(self.v_proj(hidden_states), -1, bsz) | |
key_states = torch.cat([past_key_value[0].transpose(1, 2), key_states], dim=1) | |
value_states = torch.cat([past_key_value[1].transpose(1, 2), value_states], dim=1) | |
else: | |
# self_attention | |
key_states = self._reshape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._reshape(self.v_proj(hidden_states), -1, bsz) | |
if self.is_decoder: | |
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. | |
# Further calls to cross_attention layer can then reuse all cross-attention | |
# key/value_states (first "if" case) | |
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of | |
# all previous decoder key/value_states. Further calls to uni-directional self-attention | |
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) | |
# if encoder bi-directional self-attention `past_key_value` is always `None` | |
past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2)) | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
kv_seq_len += past_key_value[0].shape[-2] | |
# In PEFT, usually we cast the layer norms in float32 for training stability reasons | |
# therefore the input hidden states gets silently casted in float32. Hence, we need | |
# cast them back in the correct dtype just to be sure everything works as expected. | |
# This might slowdown training & inference so it is recommended to not cast the LayerNorms | |
# in fp32. (LlamaRMSNorm handles it correctly) | |
input_dtype = query_states.dtype | |
if input_dtype == torch.float32: | |
if torch.is_autocast_enabled(): | |
target_dtype = torch.get_autocast_gpu_dtype() | |
# Handle the case where the model is quantized | |
elif hasattr(self.config, "_pre_quantization_dtype"): | |
target_dtype = self.config._pre_quantization_dtype | |
else: | |
target_dtype = self.q_proj.weight.dtype | |
logger.warning_once( | |
f"The input hidden states seems to be silently casted in float32, this might be related to" | |
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | |
f" {target_dtype}." | |
) | |
query_states = query_states.to(target_dtype) | |
key_states = key_states.to(target_dtype) | |
value_states = value_states.to(target_dtype) | |
attn_output = self._flash_attention_forward( | |
query_states, key_states, value_states, attention_mask, q_len, dropout=self.dropout | |
) | |
attn_output = attn_output.reshape(bsz, q_len, -1) | |
attn_output = self.out_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward | |
def _flash_attention_forward( | |
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None | |
): | |
""" | |
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token | |
first unpad the input, then computes the attention scores and pad the final attention scores. | |
Args: | |
query_states (`torch.Tensor`): | |
Input query states to be passed to Flash Attention API | |
key_states (`torch.Tensor`): | |
Input key states to be passed to Flash Attention API | |
value_states (`torch.Tensor`): | |
Input value states to be passed to Flash Attention API | |
attention_mask (`torch.Tensor`): | |
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the | |
position of padding tokens and 1 for the position of non-padding tokens. | |
dropout (`float`): | |
Attention dropout | |
softmax_scale (`float`, *optional*): | |
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) | |
""" | |
if not self._flash_attn_uses_top_left_mask: | |
causal = self.is_causal | |
else: | |
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. | |
causal = self.is_causal and query_length != 1 | |
# Contains at least one padding token in the sequence | |
if attention_mask is not None: | |
batch_size = query_states.shape[0] | |
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( | |
query_states, key_states, value_states, attention_mask, query_length | |
) | |
cu_seqlens_q, cu_seqlens_k = cu_seq_lens | |
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | |
attn_output_unpad = flash_attn_varlen_func( | |
query_states, | |
key_states, | |
value_states, | |
cu_seqlens_q=cu_seqlens_q, | |
cu_seqlens_k=cu_seqlens_k, | |
max_seqlen_q=max_seqlen_in_batch_q, | |
max_seqlen_k=max_seqlen_in_batch_k, | |
dropout_p=dropout, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
) | |
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) | |
else: | |
attn_output = flash_attn_func( | |
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal | |
) | |
return attn_output | |
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input | |
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): | |
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) | |
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape | |
key_layer = index_first_axis( | |
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | |
) | |
value_layer = index_first_axis( | |
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | |
) | |
if query_length == kv_seq_len: | |
query_layer = index_first_axis( | |
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k | |
) | |
cu_seqlens_q = cu_seqlens_k | |
max_seqlen_in_batch_q = max_seqlen_in_batch_k | |
indices_q = indices_k | |
elif query_length == 1: | |
max_seqlen_in_batch_q = 1 | |
cu_seqlens_q = torch.arange( | |
batch_size + 1, dtype=torch.int32, device=query_layer.device | |
) # There is a memcpy here, that is very bad. | |
indices_q = cu_seqlens_q[:-1] | |
query_layer = query_layer.squeeze(1) | |
else: | |
# The -q_len: slice assumes left padding. | |
attention_mask = attention_mask[:, -query_length:] | |
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) | |
return ( | |
query_layer, | |
key_layer, | |
value_layer, | |
indices_q, | |
(cu_seqlens_q, cu_seqlens_k), | |
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), | |
) | |
class Florence2SdpaAttention(Florence2Attention): | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
key_value_states: Optional[torch.Tensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
layer_head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
"""Input shape: Batch x Time x Channel""" | |
if output_attentions or layer_head_mask is not None: | |
# TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented. | |
logger.warning_once( | |
"Florence2Model is using Florence2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention" | |
' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | |
) | |
return super().forward( | |
hidden_states, | |
key_value_states=key_value_states, | |
past_key_value=past_key_value, | |
attention_mask=attention_mask, | |
layer_head_mask=layer_head_mask, | |
output_attentions=output_attentions, | |
) | |
# if key_value_states are provided this layer is used as a cross-attention layer | |
# for the decoder | |
is_cross_attention = key_value_states is not None | |
bsz, tgt_len, _ = hidden_states.size() | |
# get query proj | |
query_states = self.q_proj(hidden_states) | |
# get key, value proj | |
# `past_key_value[0].shape[2] == key_value_states.shape[1]` | |
# is checking that the `sequence_length` of the `past_key_value` is the same as | |
# the provided `key_value_states` to support prefix tuning | |
if ( | |
is_cross_attention | |
and past_key_value is not None | |
and past_key_value[0].shape[2] == key_value_states.shape[1] | |
): | |
# reuse k,v, cross_attentions | |
key_states = past_key_value[0] | |
value_states = past_key_value[1] | |
elif is_cross_attention: | |
# cross_attentions | |
key_states = self._shape(self.k_proj(key_value_states), -1, bsz) | |
value_states = self._shape(self.v_proj(key_value_states), -1, bsz) | |
elif past_key_value is not None: | |
# reuse k, v, self_attention | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
else: | |
# self_attention | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
if self.is_decoder: | |
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. | |
# Further calls to cross_attention layer can then reuse all cross-attention | |
# key/value_states (first "if" case) | |
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of | |
# all previous decoder key/value_states. Further calls to uni-directional self-attention | |
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) | |
# if encoder bi-directional self-attention `past_key_value` is always `None` | |
past_key_value = (key_states, value_states) | |
query_states = self._shape(query_states, tgt_len, bsz) | |
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment | |
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. | |
# The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1. | |
is_causal = True if self.is_causal and attention_mask is None and tgt_len > 1 else False | |
# NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask, | |
# but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577 | |
attn_output = torch.nn.functional.scaled_dot_product_attention( | |
query_states, | |
key_states, | |
value_states, | |
attn_mask=attention_mask, | |
dropout_p=self.dropout if self.training else 0.0, | |
is_causal=is_causal, | |
) | |
if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.transpose(1, 2) | |
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be | |
# partitioned across GPUs when using tensor-parallelism. | |
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, None, past_key_value | |
FLORENCE2_ATTENTION_CLASSES = { | |
"eager": Florence2Attention, | |
"sdpa": Florence2SdpaAttention, | |
"flash_attention_2": Florence2FlashAttention2, | |
} | |
class Florence2EncoderLayer(nn.Module): | |
def __init__(self, config: Florence2LanguageConfig): | |
super().__init__() | |
self.embed_dim = config.d_model | |
self.self_attn = FLORENCE2_ATTENTION_CLASSES[config._attn_implementation]( | |
embed_dim=self.embed_dim, | |
num_heads=config.encoder_attention_heads, | |
dropout=config.attention_dropout, | |
config=config, | |
) | |
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) | |
self.dropout = config.dropout | |
self.activation_fn = ACT2FN[config.activation_function] | |
self.activation_dropout = config.activation_dropout | |
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) | |
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) | |
self.final_layer_norm = nn.LayerNorm(self.embed_dim) | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
attention_mask: torch.FloatTensor, | |
layer_head_mask: torch.FloatTensor, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`torch.FloatTensor`): attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size | |
`(encoder_attention_heads,)`. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
""" | |
residual = hidden_states | |
hidden_states, attn_weights, _ = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
layer_head_mask=layer_head_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = residual + hidden_states | |
hidden_states = self.self_attn_layer_norm(hidden_states) | |
residual = hidden_states | |
hidden_states = self.activation_fn(self.fc1(hidden_states)) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) | |
hidden_states = self.fc2(hidden_states) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = residual + hidden_states | |
hidden_states = self.final_layer_norm(hidden_states) | |
if hidden_states.dtype == torch.float16 and ( | |
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() | |
): | |
clamp_value = torch.finfo(hidden_states.dtype).max - 1000 | |
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (attn_weights,) | |
return outputs | |
class Florence2DecoderLayer(nn.Module): | |
def __init__(self, config: Florence2LanguageConfig): | |
super().__init__() | |
self.embed_dim = config.d_model | |
self.self_attn = FLORENCE2_ATTENTION_CLASSES[config._attn_implementation]( | |
embed_dim=self.embed_dim, | |
num_heads=config.decoder_attention_heads, | |
dropout=config.attention_dropout, | |
is_decoder=True, | |
is_causal=True, | |
config=config, | |
) | |
self.dropout = config.dropout | |
self.activation_fn = ACT2FN[config.activation_function] | |
self.activation_dropout = config.activation_dropout | |
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) | |
self.encoder_attn = FLORENCE2_ATTENTION_CLASSES[config._attn_implementation]( | |
self.embed_dim, | |
config.decoder_attention_heads, | |
dropout=config.attention_dropout, | |
is_decoder=True, | |
config=config, | |
) | |
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) | |
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) | |
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) | |
self.final_layer_norm = nn.LayerNorm(self.embed_dim) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
layer_head_mask: Optional[torch.Tensor] = None, | |
cross_attn_layer_head_mask: Optional[torch.Tensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: Optional[bool] = False, | |
use_cache: Optional[bool] = True, | |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`torch.FloatTensor`): attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
encoder_hidden_states (`torch.FloatTensor`): | |
cross attention input to the layer of shape `(batch, seq_len, embed_dim)` | |
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size | |
`(encoder_attention_heads,)`. | |
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of | |
size `(decoder_attention_heads,)`. | |
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
""" | |
residual = hidden_states | |
# Self Attention | |
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2 | |
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None | |
# add present self-attn cache to positions 1,2 of present_key_value tuple | |
hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
hidden_states=hidden_states, | |
past_key_value=self_attn_past_key_value, | |
attention_mask=attention_mask, | |
layer_head_mask=layer_head_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = residual + hidden_states | |
hidden_states = self.self_attn_layer_norm(hidden_states) | |
# Cross-Attention Block | |
cross_attn_present_key_value = None | |
cross_attn_weights = None | |
if encoder_hidden_states is not None: | |
residual = hidden_states | |
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple | |
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None | |
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( | |
hidden_states=hidden_states, | |
key_value_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
layer_head_mask=cross_attn_layer_head_mask, | |
past_key_value=cross_attn_past_key_value, | |
output_attentions=output_attentions, | |
) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = residual + hidden_states | |
hidden_states = self.encoder_attn_layer_norm(hidden_states) | |
# add cross-attn to positions 3,4 of present_key_value tuple | |
present_key_value = present_key_value + cross_attn_present_key_value | |
# Fully Connected | |
residual = hidden_states | |
hidden_states = self.activation_fn(self.fc1(hidden_states)) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) | |
hidden_states = self.fc2(hidden_states) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = residual + hidden_states | |
hidden_states = self.final_layer_norm(hidden_states) | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (self_attn_weights, cross_attn_weights) | |
if use_cache: | |
outputs += (present_key_value,) | |
return outputs | |
class Florence2LanguagePreTrainedModel(PreTrainedModel): | |
config_class = Florence2LanguageConfig | |
base_model_prefix = "model" | |
supports_gradient_checkpointing = True | |
_keys_to_ignore_on_load_unexpected = ["encoder.version", "decoder.version"] | |
_no_split_modules = [r"Florence2EncoderLayer", r"Florence2DecoderLayer"] | |
_skip_keys_device_placement = "past_key_values" | |
_supports_flash_attn_2 = True | |
_supports_sdpa = True | |
def _init_weights(self, module): | |
std = self.config.init_std | |
if isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
def dummy_inputs(self): | |
pad_token = self.config.pad_token_id | |
input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device) | |
dummy_inputs = { | |
"attention_mask": input_ids.ne(pad_token), | |
"input_ids": input_ids, | |
} | |
return dummy_inputs | |
class Florence2Encoder(Florence2LanguagePreTrainedModel): | |
""" | |
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a | |
[`Florence2EncoderLayer`]. | |
Args: | |
config: Florence2LanguageConfig | |
embed_tokens (nn.Embedding): output embedding | |
""" | |
def __init__(self, config: Florence2LanguageConfig, embed_tokens: Optional[nn.Embedding] = None): | |
super().__init__(config) | |
self.dropout = config.dropout | |
self.layerdrop = config.encoder_layerdrop | |
embed_dim = config.d_model | |
self.padding_idx = config.pad_token_id | |
self.max_source_positions = config.max_position_embeddings | |
embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 | |
self.embed_tokens = Florence2ScaledWordEmbedding( | |
config.vocab_size, embed_dim, self.padding_idx, embed_scale=embed_scale | |
) | |
if embed_tokens is not None: | |
self.embed_tokens.weight = embed_tokens.weight | |
self.embed_positions = Florence2LearnedPositionalEmbedding( | |
config.max_position_embeddings, | |
embed_dim, | |
) | |
self.layers = nn.ModuleList([Florence2EncoderLayer(config) for _ in range(config.encoder_layers)]) | |
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" | |
self._use_sdpa = config._attn_implementation == "sdpa" | |
self.layernorm_embedding = nn.LayerNorm(embed_dim) | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embed_tokens | |
def set_input_embeddings(self, value): | |
self.embed_tokens = value | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutput]: | |
r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you | |
provide it. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert `input_ids` indices into associated vectors | |
than the model's internal embedding lookup matrix. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
for more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# retrieve input_ids and inputs_embeds | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
input = input_ids | |
input_ids = input_ids.view(-1, input_ids.shape[-1]) | |
elif inputs_embeds is not None: | |
input = inputs_embeds[:, :, -1] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
if inputs_embeds is None: | |
inputs_embeds = self.embed_tokens(input_ids) | |
embed_pos = self.embed_positions(input) | |
embed_pos = embed_pos.to(inputs_embeds.device) | |
hidden_states = inputs_embeds + embed_pos | |
hidden_states = self.layernorm_embedding(hidden_states) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
# expand attention_mask | |
if attention_mask is not None: | |
if self._use_flash_attention_2: | |
attention_mask = attention_mask if 0 in attention_mask else None | |
elif self._use_sdpa and head_mask is None and not output_attentions: | |
# output_attentions=True & head_mask can not be supported when using SDPA, fall back to | |
# the manual implementation that requires a 4D causal mask in all cases. | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
attention_mask = _prepare_4d_attention_mask_for_sdpa(attention_mask, inputs_embeds.dtype) | |
else: | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) | |
encoder_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
# check if head_mask has a correct number of layers specified if desired | |
if head_mask is not None: | |
if head_mask.size()[0] != (len(self.layers)): | |
raise ValueError( | |
f"The head_mask should be specified for {len(self.layers)} layers, but it is for" | |
f" {head_mask.size()[0]}." | |
) | |
for idx, encoder_layer in enumerate(self.layers): | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
to_drop = False | |
if self.training: | |
dropout_probability = torch.rand([]) | |
if dropout_probability < self.layerdrop: # skip the layer | |
to_drop = True | |
if to_drop: | |
layer_outputs = (None, None) | |
else: | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
encoder_layer.__call__, | |
hidden_states, | |
attention_mask, | |
(head_mask[idx] if head_mask is not None else None), | |
output_attentions, | |
) | |
else: | |
layer_outputs = encoder_layer( | |
hidden_states, | |
attention_mask, | |
layer_head_mask=(head_mask[idx] if head_mask is not None else None), | |
output_attentions=output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_attentions = all_attentions + (layer_outputs[1],) | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions | |
) | |
class Florence2Decoder(Florence2LanguagePreTrainedModel): | |
""" | |
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`Florence2DecoderLayer`] | |
Args: | |
config: Florence2LanguageConfig | |
embed_tokens (nn.Embedding): output embedding | |
""" | |
def __init__(self, config: Florence2LanguageConfig, embed_tokens: Optional[nn.Embedding] = None): | |
super().__init__(config) | |
self.dropout = config.dropout | |
self.layerdrop = config.decoder_layerdrop | |
self.padding_idx = config.pad_token_id | |
self.max_target_positions = config.max_position_embeddings | |
embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 | |
self.embed_tokens = Florence2ScaledWordEmbedding( | |
config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale | |
) | |
if embed_tokens is not None: | |
self.embed_tokens.weight = embed_tokens.weight | |
self.embed_positions = Florence2LearnedPositionalEmbedding( | |
config.max_position_embeddings, | |
config.d_model, | |
) | |
self.layers = nn.ModuleList([Florence2DecoderLayer(config) for _ in range(config.decoder_layers)]) | |
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" | |
self._use_sdpa = config._attn_implementation == "sdpa" | |
self.layernorm_embedding = nn.LayerNorm(config.d_model) | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embed_tokens | |
def set_input_embeddings(self, value): | |
self.embed_tokens = value | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: | |
r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you | |
provide it. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): | |
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention | |
of the decoder. | |
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): | |
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values | |
selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing | |
cross-attention on hidden heads. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of | |
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of | |
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | |
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the | |
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those | |
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of | |
all `decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert `input_ids` indices into associated vectors | |
than the model's internal embedding lookup matrix. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
for more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# retrieve input_ids and inputs_embeds | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") | |
elif input_ids is not None: | |
input = input_ids | |
input_shape = input.shape | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
input = inputs_embeds[:, :, -1] | |
else: | |
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") | |
# past_key_values_length | |
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 | |
if inputs_embeds is None: | |
inputs_embeds = self.embed_tokens(input) | |
if self._use_flash_attention_2: | |
# 2d mask is passed through the layers | |
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None | |
elif self._use_sdpa and not output_attentions and cross_attn_head_mask is None: | |
# output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on | |
# the manual implementation that requires a 4D causal mask in all cases. | |
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( | |
attention_mask, | |
input_shape, | |
inputs_embeds, | |
past_key_values_length, | |
) | |
else: | |
# 4d mask is passed through the layers | |
attention_mask = _prepare_4d_causal_attention_mask( | |
attention_mask, input_shape, inputs_embeds, past_key_values_length | |
) | |
# expand encoder attention mask | |
if encoder_hidden_states is not None and encoder_attention_mask is not None: | |
if self._use_flash_attention_2: | |
encoder_attention_mask = encoder_attention_mask if 0 in encoder_attention_mask else None | |
elif self._use_sdpa and cross_attn_head_mask is None and not output_attentions: | |
# output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on | |
# the manual implementation that requires a 4D causal mask in all cases. | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa( | |
encoder_attention_mask, | |
inputs_embeds.dtype, | |
tgt_len=input_shape[-1], | |
) | |
else: | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
encoder_attention_mask = _prepare_4d_attention_mask( | |
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] | |
) | |
# embed positions | |
positions = self.embed_positions(input, past_key_values_length) | |
positions = positions.to(inputs_embeds.device) | |
hidden_states = inputs_embeds + positions | |
hidden_states = self.layernorm_embedding(hidden_states) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
# decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None | |
next_decoder_cache = () if use_cache else None | |
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired | |
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): | |
if attn_mask is not None: | |
if attn_mask.size()[0] != (len(self.layers)): | |
raise ValueError( | |
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" | |
f" {head_mask.size()[0]}." | |
) | |
for idx, decoder_layer in enumerate(self.layers): | |
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
if self.training: | |
dropout_probability = torch.rand([]) | |
if dropout_probability < self.layerdrop: | |
continue | |
past_key_value = past_key_values[idx] if past_key_values is not None else None | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
decoder_layer.__call__, | |
hidden_states, | |
attention_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
head_mask[idx] if head_mask is not None else None, | |
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, | |
None, | |
output_attentions, | |
use_cache, | |
) | |
else: | |
layer_outputs = decoder_layer( | |
hidden_states, | |
attention_mask=attention_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
layer_head_mask=(head_mask[idx] if head_mask is not None else None), | |
cross_attn_layer_head_mask=( | |
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None | |
), | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) | |
if output_attentions: | |
all_self_attns += (layer_outputs[1],) | |
if encoder_hidden_states is not None: | |
all_cross_attentions += (layer_outputs[2],) | |
# add hidden states from the last decoder layer | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
next_cache = next_decoder_cache if use_cache else None | |
if not return_dict: | |
return tuple( | |
v | |
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] | |
if v is not None | |
) | |
return BaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=hidden_states, | |
past_key_values=next_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
cross_attentions=all_cross_attentions, | |
) | |
class Florence2LanguageModel(Florence2LanguagePreTrainedModel): | |
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] | |
def __init__(self, config: Florence2LanguageConfig): | |
super().__init__(config) | |
padding_idx, vocab_size = config.pad_token_id, config.vocab_size | |
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx) | |
self.encoder = Florence2Encoder(config, self.shared) | |
self.decoder = Florence2Decoder(config, self.shared) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def _tie_weights(self): | |
if self.config.tie_word_embeddings: | |
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) | |
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) | |
def get_input_embeddings(self): | |
return self.shared | |
def set_input_embeddings(self, value): | |
self.shared = value | |
self.encoder.embed_tokens = self.shared | |
self.decoder.embed_tokens = self.shared | |
def get_encoder(self): | |
return self.encoder | |
def get_decoder(self): | |
return self.decoder | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
decoder_input_ids: Optional[torch.LongTensor] = None, | |
decoder_attention_mask: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
decoder_head_mask: Optional[torch.Tensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
encoder_outputs: Optional[List[torch.FloatTensor]] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
decoder_inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, Seq2SeqModelOutput]: | |
# different to other models, Florence2 automatically creates decoder_input_ids from | |
# input_ids if no decoder_input_ids are provided | |
if decoder_input_ids is None and decoder_inputs_embeds is None: | |
if input_ids is None: | |
raise ValueError( | |
"If no `decoder_input_ids` or `decoder_inputs_embeds` are " | |
"passed, `input_ids` cannot be `None`. Please pass either " | |
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`." | |
) | |
decoder_input_ids = shift_tokens_right( | |
input_ids, self.config.pad_token_id, self.config.decoder_start_token_id | |
) | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if encoder_outputs is None: | |
encoder_outputs = self.encoder( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True | |
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): | |
encoder_outputs = BaseModelOutput( | |
last_hidden_state=encoder_outputs[0], | |
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, | |
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, | |
) | |
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) | |
decoder_outputs = self.decoder( | |
input_ids=decoder_input_ids, | |
attention_mask=decoder_attention_mask, | |
encoder_hidden_states=encoder_outputs[0], | |
encoder_attention_mask=attention_mask, | |
head_mask=decoder_head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
past_key_values=past_key_values, | |
inputs_embeds=decoder_inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
if not return_dict: | |
return decoder_outputs + encoder_outputs | |
return Seq2SeqModelOutput( | |
last_hidden_state=decoder_outputs.last_hidden_state, | |
past_key_values=decoder_outputs.past_key_values, | |
decoder_hidden_states=decoder_outputs.hidden_states, | |
decoder_attentions=decoder_outputs.attentions, | |
cross_attentions=decoder_outputs.cross_attentions, | |
encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
encoder_hidden_states=encoder_outputs.hidden_states, | |
encoder_attentions=encoder_outputs.attentions, | |
) | |
class Florence2LanguageForConditionalGeneration(Florence2LanguagePreTrainedModel): | |
base_model_prefix = "model" | |
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"] | |
_keys_to_ignore_on_load_missing = ["final_logits_bias"] | |
def __init__(self, config: Florence2LanguageConfig): | |
super().__init__(config) | |
self.model = Florence2LanguageModel(config) | |
self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings))) | |
self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_encoder(self): | |
return self.model.get_encoder() | |
def get_decoder(self): | |
return self.model.get_decoder() | |
def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding: | |
new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of) | |
self._resize_final_logits_bias(new_embeddings.weight.shape[0]) | |
return new_embeddings | |
def _resize_final_logits_bias(self, new_num_tokens: int) -> None: | |
old_num_tokens = self.final_logits_bias.shape[-1] | |
if new_num_tokens <= old_num_tokens: | |
new_bias = self.final_logits_bias[:, :new_num_tokens] | |
else: | |
extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device) | |
new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1) | |
self.register_buffer("final_logits_bias", new_bias) | |
def get_output_embeddings(self): | |
return self.lm_head | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
decoder_input_ids: Optional[torch.LongTensor] = None, | |
decoder_attention_mask: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
decoder_head_mask: Optional[torch.Tensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
encoder_outputs: Optional[List[torch.FloatTensor]] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
decoder_inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, Seq2SeqLMOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
Returns: | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if labels is not None: | |
if use_cache: | |
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") | |
use_cache = False | |
if decoder_input_ids is None and decoder_inputs_embeds is None: | |
decoder_input_ids = shift_tokens_right( | |
labels, self.config.pad_token_id, self.config.decoder_start_token_id | |
) | |
outputs = self.model( | |
input_ids, | |
attention_mask=attention_mask, | |
decoder_input_ids=decoder_input_ids, | |
encoder_outputs=encoder_outputs, | |
decoder_attention_mask=decoder_attention_mask, | |
head_mask=head_mask, | |
decoder_head_mask=decoder_head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
decoder_inputs_embeds=decoder_inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
lm_logits = self.lm_head(outputs[0]) | |
lm_logits = lm_logits + self.final_logits_bias.to(lm_logits.device) | |
masked_lm_loss = None | |
if labels is not None: | |
labels = labels.to(lm_logits.device) | |
loss_fct = CrossEntropyLoss() | |
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) | |
if not return_dict: | |
output = (lm_logits,) + outputs[1:] | |
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output | |
return Seq2SeqLMOutput( | |
loss=masked_lm_loss, | |
logits=lm_logits, | |
past_key_values=outputs.past_key_values, | |
decoder_hidden_states=outputs.decoder_hidden_states, | |
decoder_attentions=outputs.decoder_attentions, | |
cross_attentions=outputs.cross_attentions, | |
encoder_last_hidden_state=outputs.encoder_last_hidden_state, | |
encoder_hidden_states=outputs.encoder_hidden_states, | |
encoder_attentions=outputs.encoder_attentions, | |
) | |
def prepare_inputs_for_generation( | |
self, | |
decoder_input_ids, | |
past_key_values=None, | |
attention_mask=None, | |
decoder_attention_mask=None, | |
head_mask=None, | |
decoder_head_mask=None, | |
cross_attn_head_mask=None, | |
use_cache=None, | |
encoder_outputs=None, | |
**kwargs, | |
): | |
# cut decoder_input_ids if past_key_values is used | |
if past_key_values is not None: | |
past_length = past_key_values[0][0].shape[2] | |
# Some generation methods already pass only the last input ID | |
if decoder_input_ids.shape[1] > past_length: | |
remove_prefix_length = past_length | |
else: | |
# Default to old behavior: keep only final ID | |
remove_prefix_length = decoder_input_ids.shape[1] - 1 | |
decoder_input_ids = decoder_input_ids[:, remove_prefix_length:] | |
return { | |
"input_ids": None, # encoder_outputs is defined. input_ids not needed | |
"encoder_outputs": encoder_outputs, | |
"past_key_values": past_key_values, | |
"decoder_input_ids": decoder_input_ids, | |
"attention_mask": attention_mask, | |
"decoder_attention_mask": decoder_attention_mask, | |
"head_mask": head_mask, | |
"decoder_head_mask": decoder_head_mask, | |
"cross_attn_head_mask": cross_attn_head_mask, | |
"use_cache": use_cache, # change this to avoid caching (presumably for debugging) | |
} | |
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): | |
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) | |
def _reorder_cache(past_key_values, beam_idx): | |
reordered_past = () | |
for layer_past in past_key_values: | |
# cached cross_attention states don't have to be reordered -> they are always the same | |
reordered_past += ( | |
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2]) | |
+ layer_past[2:], | |
) | |
return reordered_past | |
class Florence2Seq2SeqLMOutput(ModelOutput): | |
""" | |
Base class for Florence-2 model's outputs that also contains : pre-computed hidden states that can speed up sequential | |
decoding. | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | |
Language modeling loss. | |
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the decoder of the model. | |
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, | |
hidden_size)` is output. | |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape | |
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | |
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | |
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | |
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the decoder at the output of each layer plus the optional initial embedding outputs. | |
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the | |
self-attention heads. | |
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the | |
weighted average in the cross-attention heads. | |
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Sequence of hidden-states at the output of the last layer of the encoder of the model. | |
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the encoder at the output of each layer plus the optional initial embedding outputs. | |
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the | |
self-attention heads. | |
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*): | |
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, | |
num_image_tokens, hidden_size)`. | |
image_hidden_states of the model produced by the vision encoder | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
last_hidden_state: torch.FloatTensor = None | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None | |
decoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
decoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | |
cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | |
encoder_last_hidden_state: Optional[torch.FloatTensor] = None | |
encoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
encoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | |
image_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
FLORENCE2_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`Florence2Config`] or [`Florence2VisionConfig`]): | |
Model configuration class with all the parameters of the model. Initializing with a config file does not | |
load the weights associated with the model, only the configuration. Check out the | |
[`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
class Florence2PreTrainedModel(PreTrainedModel): | |
config_class = Florence2Config | |
base_model_prefix = "model" | |
supports_gradient_checkpointing = True | |
_skip_keys_device_placement = "past_key_values" | |
def _supports_flash_attn_2(self): | |
""" | |
Retrieve language_model's attribute to check whether the model supports | |
Flash Attention 2 or not. | |
""" | |
return self.language_model._supports_flash_attn_2 | |
def _supports_sdpa(self): | |
""" | |
Retrieve language_model's attribute to check whether the model supports | |
SDPA or not. | |
""" | |
return self.language_model._supports_sdpa | |
FLORENCE2_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)): | |
The tensors corresponding to the input images. Pixel values can be obtained using | |
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details ([]`Florence2Processor`] uses | |
[`CLIPImageProcessor`] for processing images). | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see | |
`past_key_values`). | |
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | |
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | |
information on the default strategy. | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) | |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape | |
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | |
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | |
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class Florence2VisionModel(Florence2PreTrainedModel): | |
def __init__(self, config: Florence2VisionConfig): | |
super().__init__(config) | |
assert config.model_type == 'davit', 'only DaViT is supported for now' | |
self.vision_tower = DaViT.from_config(config=config) | |
self.post_init() | |
def forward(self, pixel_values): | |
if len(pixel_values.shape) == 4: | |
x = self.vision_tower.forward_features_unpool(pixel_values) | |
else: | |
raise ValueError(f'invalid image shape {pixel_values.shape}') | |
return x | |
class Florence2VisionModelWithProjection(Florence2PreTrainedModel): | |
def __init__(self, config: Florence2VisionConfig): | |
super().__init__(config) | |
assert config.model_type == 'davit', 'only DaViT is supported for now' | |
self.vision_tower = DaViT.from_config(config=config) | |
self._build_image_projection_layers(config) | |
self.post_init() | |
def _build_image_projection_layers(self, config): | |
image_dim_out = config.dim_embed[-1] | |
dim_projection = config.projection_dim | |
self.image_projection = nn.Parameter( | |
torch.empty(image_dim_out, dim_projection) | |
) | |
self.image_proj_norm = nn.LayerNorm(dim_projection) | |
image_pos_embed_config = config.image_pos_embed | |
if image_pos_embed_config['type'] == 'learned_abs_2d': | |
self.image_pos_embed = LearnedAbsolutePositionEmbedding2D( | |
embedding_dim=image_dim_out, | |
num_pos=image_pos_embed_config['max_pos_embeddings'] | |
) | |
else: | |
raise NotImplementedError('Not implemented yet') | |
self.image_feature_source = config.image_feature_source | |
# temporal embedding | |
visual_temporal_embedding_config = config.visual_temporal_embedding | |
if visual_temporal_embedding_config['type'] == 'COSINE': | |
self.visual_temporal_embed = PositionalEmbeddingCosine1D( | |
embed_dim=image_dim_out, | |
max_seq_len=visual_temporal_embedding_config['max_temporal_embeddings'] | |
) | |
else: | |
raise NotImplementedError('Not implemented yet') | |
def forward(self, pixel_values): | |
if len(pixel_values.shape) == 4: | |
batch_size, C, H, W = pixel_values.shape | |
T = 1 | |
x = self.vision_tower.forward_features_unpool(pixel_values) | |
else: | |
raise ValueError(f'invalid image shape {pixel_values.shape}') | |
if self.image_pos_embed is not None: | |
x = x.view(batch_size * T, -1, x.shape[-1]) | |
num_tokens = x.shape[-2] | |
h, w = int(num_tokens ** 0.5), int(num_tokens ** 0.5) | |
assert h * w == num_tokens, 'only support square feature maps for now' | |
x = x.view(batch_size * T, h, w, x.shape[-1]) | |
pos_embed = self.image_pos_embed(x) | |
x = x + pos_embed | |
x = x.view(batch_size, T * h*w, x.shape[-1]) | |
if self.visual_temporal_embed is not None: | |
visual_temporal_embed = self.visual_temporal_embed(x.view(batch_size, T, -1, x.shape[-1])[:, :, 0]) | |
x = x.view(batch_size, T, -1, x.shape[-1]) + visual_temporal_embed.view(1, T, 1, x.shape[-1]) | |
x_feat_dict = {} | |
spatial_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=2) | |
x_feat_dict['spatial_avg_pool'] = spatial_avg_pool_x | |
temporal_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=1) | |
x_feat_dict['temporal_avg_pool'] = temporal_avg_pool_x | |
x = x.view(batch_size, T, -1, x.shape[-1])[:, -1] | |
x_feat_dict['last_frame'] = x | |
new_x = [] | |
for _image_feature_source in self.image_feature_source: | |
if _image_feature_source not in x_feat_dict: | |
raise ValueError('invalid image feature source: {}'.format(_image_feature_source)) | |
new_x.append(x_feat_dict[_image_feature_source]) | |
x = torch.cat(new_x, dim=1) | |
x = x @ self.image_projection | |
x = self.image_proj_norm(x) | |
return x | |
class Florence2ForConditionalGeneration(Florence2PreTrainedModel): | |
def __init__(self, config: Florence2Config): | |
super().__init__(config) | |
assert config.vision_config.model_type == 'davit', 'only DaViT is supported for now' | |
self.vision_tower = DaViT.from_config(config=config.vision_config) | |
# remove unused layers | |
del self.vision_tower.head | |
del self.vision_tower.norms | |
self.vocab_size = config.vocab_size | |
self._attn_implementation = config._attn_implementation | |
self._build_image_projection_layers(config) | |
language_model = Florence2LanguageForConditionalGeneration(config=config.text_config) | |
if language_model._tied_weights_keys is not None: | |
self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys] | |
self.language_model = language_model | |
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 | |
self.post_init() | |
def _build_image_projection_layers(self, config): | |
image_dim_out = config.vision_config.dim_embed[-1] | |
dim_projection = config.vision_config.projection_dim | |
self.image_projection = nn.Parameter( | |
torch.empty(image_dim_out, dim_projection) | |
) | |
self.image_proj_norm = nn.LayerNorm(dim_projection) | |
image_pos_embed_config = config.vision_config.image_pos_embed | |
if image_pos_embed_config['type'] == 'learned_abs_2d': | |
self.image_pos_embed = LearnedAbsolutePositionEmbedding2D( | |
embedding_dim=image_dim_out, | |
num_pos=image_pos_embed_config['max_pos_embeddings'] | |
) | |
else: | |
raise NotImplementedError('Not implemented yet') | |
self.image_feature_source = config.vision_config.image_feature_source | |
# temporal embedding | |
visual_temporal_embedding_config = config.vision_config.visual_temporal_embedding | |
if visual_temporal_embedding_config['type'] == 'COSINE': | |
self.visual_temporal_embed = PositionalEmbeddingCosine1D( | |
embed_dim=image_dim_out, | |
max_seq_len=visual_temporal_embedding_config['max_temporal_embeddings'] | |
) | |
else: | |
raise NotImplementedError('Not implemented yet') | |
def get_encoder(self): | |
return self.language_model.get_encoder() | |
def get_decoder(self): | |
return self.language_model.get_decoder() | |
def get_input_embeddings(self): | |
return self.language_model.get_input_embeddings() | |
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding: | |
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of) | |
# update vocab size | |
self.config.text_config.vocab_size = model_embeds.num_embeddings | |
self.config.vocab_size = model_embeds.num_embeddings | |
self.vocab_size = model_embeds.num_embeddings | |
return model_embeds | |
def _encode_image(self, pixel_values): | |
if len(pixel_values.shape) == 4: | |
batch_size, C, H, W = pixel_values.shape | |
T = 1 | |
x = self.vision_tower.forward_features_unpool(pixel_values) | |
else: | |
raise ValueError(f'invalid image shape {pixel_values.shape}') | |
if self.image_pos_embed is not None: | |
x = x.view(batch_size * T, -1, x.shape[-1]) | |
num_tokens = x.shape[-2] | |
h, w = int(num_tokens ** 0.5), int(num_tokens ** 0.5) | |
assert h * w == num_tokens, 'only support square feature maps for now' | |
x = x.view(batch_size * T, h, w, x.shape[-1]) | |
pos_embed = self.image_pos_embed(x) | |
x = x + pos_embed | |
x = x.view(batch_size, T * h*w, x.shape[-1]) | |
if self.visual_temporal_embed is not None: | |
visual_temporal_embed = self.visual_temporal_embed(x.view(batch_size, T, -1, x.shape[-1])[:, :, 0]) | |
x = x.view(batch_size, T, -1, x.shape[-1]) + visual_temporal_embed.view(1, T, 1, x.shape[-1]) | |
x_feat_dict = {} | |
spatial_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=2) | |
x_feat_dict['spatial_avg_pool'] = spatial_avg_pool_x | |
temporal_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=1) | |
x_feat_dict['temporal_avg_pool'] = temporal_avg_pool_x | |
x = x.view(batch_size, T, -1, x.shape[-1])[:, -1] | |
x_feat_dict['last_frame'] = x | |
new_x = [] | |
for _image_feature_source in self.image_feature_source: | |
if _image_feature_source not in x_feat_dict: | |
raise ValueError('invalid image feature source: {}'.format(_image_feature_source)) | |
new_x.append(x_feat_dict[_image_feature_source]) | |
x = torch.cat(new_x, dim=1) | |
x = x @ self.image_projection | |
x = self.image_proj_norm(x) | |
return x | |
def _merge_input_ids_with_image_features( | |
self, image_features, inputs_embeds, task_prefix_attention_mask=None | |
): | |
batch_size, image_token_length = image_features.size()[:-1] | |
device = image_features.device | |
image_attention_mask = torch.ones(batch_size, image_token_length, device=device) | |
# task_prefix_embeds: [batch_size, padded_context_length, hidden_size] | |
# task_prefix_attention_mask: [batch_size, context_length] | |
if inputs_embeds is None: | |
return image_features, image_attention_mask | |
task_prefix_embeds = inputs_embeds | |
if task_prefix_attention_mask is None: | |
task_prefix_attention_mask = torch.ones(batch_size, task_prefix_embeds.size(1), device=device) | |
if len(task_prefix_attention_mask.shape) == 3: | |
task_prefix_attention_mask = task_prefix_attention_mask[:, 0] | |
# concat [image embeds, task prefix embeds] | |
inputs_embeds = torch.cat([image_features, task_prefix_embeds], dim=1) | |
attention_mask = torch.cat([image_attention_mask, task_prefix_attention_mask], dim=1) | |
return inputs_embeds, attention_mask | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
pixel_values: torch.FloatTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
decoder_input_ids: Optional[torch.LongTensor] = None, | |
decoder_attention_mask: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
decoder_head_mask: Optional[torch.Tensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
encoder_outputs: Optional[List[torch.FloatTensor]] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
decoder_inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, Florence2Seq2SeqLMOutput]: | |
r""" | |
Args: | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
Returns: | |
Example: | |
```python | |
>>> from PIL import Image | |
>>> import requests | |
>>> from transformers import AutoProcessor, Florence2ForConditionalGeneration | |
>>> model = Florence2ForConditionalGeneration.from_pretrained("microsoft/Florence-2-large") | |
>>> processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large") | |
>>> prompt = "<CAPTION>" | |
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> inputs = processor(text=prompt, images=image, return_tensors="pt") | |
>>> # Generate | |
>>> generate_ids = model.generate(**inputs, max_length=100) | |
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
"A green car parked in front of a yellow building." | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
image_features = None | |
if inputs_embeds is None: | |
# 1. Extra the input embeddings | |
if input_ids is not None: | |
inputs_embeds = self.get_input_embeddings()(input_ids) | |
# 2. Merge text and images | |
if pixel_values is not None: | |
# (batch_size, num_image_tokens, hidden_size) | |
image_features = self._encode_image(pixel_values) | |
inputs_embeds, attention_mask = self._merge_input_ids_with_image_features(image_features, inputs_embeds, task_prefix_attention_mask=attention_mask) | |
if inputs_embeds is not None: | |
attention_mask = attention_mask.to(inputs_embeds.dtype) | |
outputs = self.language_model( | |
attention_mask=attention_mask, | |
labels=labels, | |
inputs_embeds=inputs_embeds, | |
decoder_input_ids=decoder_input_ids, | |
encoder_outputs=encoder_outputs, | |
decoder_attention_mask=decoder_attention_mask, | |
head_mask=head_mask, | |
decoder_head_mask=decoder_head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
past_key_values=past_key_values, | |
decoder_inputs_embeds=decoder_inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
logits = outputs.logits | |
logits = logits.float() | |
loss = outputs.loss | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return (loss,) + output if loss is not None else output | |
return Florence2Seq2SeqLMOutput( | |
loss=loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
decoder_hidden_states=outputs.decoder_hidden_states, | |
decoder_attentions=outputs.decoder_attentions, | |
cross_attentions=outputs.cross_attentions, | |
encoder_last_hidden_state=outputs.encoder_last_hidden_state, | |
encoder_hidden_states=outputs.encoder_hidden_states, | |
encoder_attentions=outputs.encoder_attentions, | |
image_hidden_states=image_features | |
) | |
def generate( | |
self, | |
input_ids, | |
inputs_embeds=None, | |
pixel_values=None, | |
attention_mask=None, | |
**kwargs | |
): | |
if inputs_embeds is None: | |
# 1. Extra the input embeddings | |
if input_ids is not None: | |
inputs_embeds = self.get_input_embeddings()(input_ids) | |
# 2. Merge text and images | |
if pixel_values is not None: | |
image_features = self._encode_image(pixel_values) | |
inputs_embeds, attention_mask = self._merge_input_ids_with_image_features(image_features, inputs_embeds, task_prefix_attention_mask=attention_mask) | |
return self.language_model.generate( | |
input_ids=None, | |
inputs_embeds=inputs_embeds, | |
attention_mask=attention_mask, | |
**kwargs | |
) | |
def prepare_inputs_for_generation( | |
self, | |
decoder_input_ids, | |
past_key_values=None, | |
attention_mask=None, | |
pixel_values=None, | |
decoder_attention_mask=None, | |
head_mask=None, | |
decoder_head_mask=None, | |
cross_attn_head_mask=None, | |
use_cache=None, | |
encoder_outputs=None, | |
**kwargs, | |
): | |
# cut decoder_input_ids if past_key_values is used | |
if past_key_values is not None: | |
past_length = past_key_values[0][0].shape[2] | |
# Some generation methods already pass only the last input ID | |
if decoder_input_ids.shape[1] > past_length: | |
remove_prefix_length = past_length | |
else: | |
# Default to old behavior: keep only final ID | |
remove_prefix_length = decoder_input_ids.shape[1] - 1 | |
decoder_input_ids = decoder_input_ids[:, remove_prefix_length:] | |
return { | |
"input_ids": None, # encoder_outputs is defined. input_ids not needed | |
"encoder_outputs": encoder_outputs, | |
"past_key_values": past_key_values, | |
"decoder_input_ids": decoder_input_ids, | |
"attention_mask": attention_mask, | |
"pixel_values": pixel_values, | |
"decoder_attention_mask": decoder_attention_mask, | |
"head_mask": head_mask, | |
"decoder_head_mask": decoder_head_mask, | |
"cross_attn_head_mask": cross_attn_head_mask, | |
"use_cache": use_cache, # change this to avoid caching (presumably for debugging) | |
} | |
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): | |
return self.language_model.shift_tokens_right(labels) | |
def _reorder_cache(self, *args, **kwargs): | |
return self.language_model._reorder_cache(*args, **kwargs) |