|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch EvaCLIP model.""" |
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Any, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from einops import rearrange, repeat |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ( |
|
ModelOutput, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from .configuration_evaclip import EvaCLIPConfig, EvaCLIPTextConfig, EvaCLIPVisionConfig |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "LLM2CLIP-EVA02-B-16" |
|
|
|
Eva_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"LLM2CLIP-EVA02-B-16", |
|
] |
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): |
|
""" |
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. |
|
""" |
|
bsz, src_len = mask.size() |
|
tgt_len = tgt_len if tgt_len is not None else src_len |
|
|
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) |
|
|
|
inverted_mask = 1.0 - expanded_mask |
|
|
|
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) |
|
|
|
|
|
def broadcat(tensors, dim = -1): |
|
num_tensors = len(tensors) |
|
shape_lens = set(list(map(lambda t: len(t.shape), tensors))) |
|
assert len(shape_lens) == 1, 'tensors must all have the same number of dimensions' |
|
shape_len = list(shape_lens)[0] |
|
dim = (dim + shape_len) if dim < 0 else dim |
|
dims = list(zip(*map(lambda t: list(t.shape), tensors))) |
|
expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim] |
|
assert all([*map(lambda t: len(set(t[1])) <= 2, expandable_dims)]), 'invalid dimensions for broadcastable concatentation' |
|
max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims)) |
|
expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims)) |
|
expanded_dims.insert(dim, (dim, dims[dim])) |
|
expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims))) |
|
tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes))) |
|
return torch.cat(tensors, dim = dim) |
|
|
|
class VisionRotaryEmbeddingFast(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
pt_seq_len, |
|
ft_seq_len=None, |
|
custom_freqs = None, |
|
freqs_for = 'lang', |
|
theta = 10000, |
|
max_freq = 10, |
|
num_freqs = 1, |
|
patch_dropout = 0. |
|
): |
|
super().__init__() |
|
if custom_freqs: |
|
freqs = custom_freqs |
|
elif freqs_for == 'lang': |
|
freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim)) |
|
elif freqs_for == 'pixel': |
|
freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi |
|
elif freqs_for == 'constant': |
|
freqs = torch.ones(num_freqs).float() |
|
else: |
|
raise ValueError(f'unknown modality {freqs_for}') |
|
|
|
if ft_seq_len is None: ft_seq_len = pt_seq_len |
|
t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len |
|
|
|
freqs = torch.einsum('..., f -> ... f', t, freqs) |
|
freqs = repeat(freqs, '... n -> ... (n r)', r = 2) |
|
freqs = broadcat((freqs[:, None, :], freqs[None, :, :]), dim = -1) |
|
|
|
freqs_cos = freqs.cos().view(-1, freqs.shape[-1]) |
|
freqs_sin = freqs.sin().view(-1, freqs.shape[-1]) |
|
|
|
self.patch_dropout = patch_dropout |
|
|
|
self.register_buffer("freqs_cos", freqs_cos) |
|
self.register_buffer("freqs_sin", freqs_sin) |
|
|
|
|
|
|
|
def forward(self, t, patch_indices_keep=None): |
|
if patch_indices_keep is not None: |
|
batch = t.size()[0] |
|
batch_indices = torch.arange(batch) |
|
batch_indices = batch_indices[..., None] |
|
|
|
freqs_cos = repeat(self.freqs_cos, 'i j -> n i m j', n=t.shape[0], m=t.shape[1]) |
|
freqs_sin = repeat(self.freqs_sin, 'i j -> n i m j', n=t.shape[0], m=t.shape[1]) |
|
|
|
freqs_cos = freqs_cos[batch_indices, patch_indices_keep] |
|
freqs_cos = rearrange(freqs_cos, 'n i m j -> n m i j') |
|
freqs_sin = freqs_sin[batch_indices, patch_indices_keep] |
|
freqs_sin = rearrange(freqs_sin, 'n i m j -> n m i j') |
|
|
|
return t * freqs_cos + rotate_half(t) * freqs_sin |
|
|
|
return t * self.freqs_cos + rotate_half(t) * self.freqs_sin |
|
|
|
|
|
|
|
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: |
|
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device)) |
|
|
|
|
|
def clip_loss(similarity: torch.Tensor) -> torch.Tensor: |
|
caption_loss = contrastive_loss(similarity) |
|
image_loss = contrastive_loss(similarity.t()) |
|
return (caption_loss + image_loss) / 2.0 |
|
|
|
|
|
@dataclass |
|
class EvaCLIPVisionModelOutput(ModelOutput): |
|
""" |
|
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. |
|
|
|
Args: |
|
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): |
|
The image embeddings obtained by applying the projection layer to the pooler_output. |
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
image_embeds: Optional[torch.FloatTensor] = None |
|
last_hidden_state: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
@dataclass |
|
class EvaCLIPTextModelOutput(ModelOutput): |
|
""" |
|
Base class for text model's outputs that also contains a pooling of the last hidden states. |
|
|
|
Args: |
|
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): |
|
The text embeddings obtained by applying the projection layer to the pooler_output. |
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
text_embeds: Optional[torch.FloatTensor] = None |
|
last_hidden_state: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
@dataclass |
|
class EvaCLIPOutput(ModelOutput): |
|
""" |
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): |
|
Contrastive loss for image-text similarity. |
|
logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`): |
|
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text |
|
similarity scores. |
|
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`): |
|
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image |
|
similarity scores. |
|
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): |
|
The text embeddings obtained by applying the projection layer to the pooled output of [`EvaCLIPTextModel`]. |
|
image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): |
|
The image embeddings obtained by applying the projection layer to the pooled output of [`EvaCLIPVisionModel`]. |
|
text_model_output(`BaseModelOutputWithPooling`): |
|
The output of the [`EvaCLIPTextModel`]. |
|
vision_model_output(`BaseModelOutputWithPooling`): |
|
The output of the [`EvaCLIPVisionModel`]. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits_per_image: torch.FloatTensor = None |
|
logits_per_text: torch.FloatTensor = None |
|
text_embeds: torch.FloatTensor = None |
|
image_embeds: torch.FloatTensor = None |
|
text_model_output: BaseModelOutputWithPooling = None |
|
vision_model_output: BaseModelOutputWithPooling = None |
|
|
|
def to_tuple(self) -> Tuple[Any]: |
|
return tuple( |
|
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() |
|
for k in self.keys() |
|
) |
|
|
|
|
|
class EvaCLIPVisionEmbeddings(nn.Module): |
|
def __init__(self, config: EvaCLIPVisionConfig): |
|
super().__init__() |
|
self.config = config |
|
self.embed_dim = config.hidden_size |
|
self.image_size = config.image_size |
|
self.patch_size = config.patch_size |
|
|
|
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim)) |
|
|
|
self.patch_embedding = nn.Conv2d( |
|
in_channels=config.num_channels, |
|
out_channels=self.embed_dim, |
|
kernel_size=self.patch_size, |
|
stride=self.patch_size, |
|
bias=True, |
|
) |
|
|
|
self.num_patches = (self.image_size // self.patch_size) ** 2 |
|
self.num_positions = self.num_patches + 1 |
|
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) |
|
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent = False) |
|
|
|
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: |
|
batch_size = pixel_values.shape[0] |
|
patch_embeds = self.patch_embedding(pixel_values) |
|
patch_embeds = patch_embeds.flatten(2).transpose(1, 2) |
|
|
|
class_embeds = self.class_embedding.expand(batch_size, 1, -1) |
|
embeddings = torch.cat([class_embeds, patch_embeds], dim=1) |
|
embeddings = embeddings + self.position_embedding(self.position_ids) |
|
return embeddings |
|
|
|
|
|
class EvaCLIPTextEmbeddings(nn.Module): |
|
def __init__(self, config: EvaCLIPTextConfig): |
|
super().__init__() |
|
embed_dim = config.hidden_size |
|
|
|
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) |
|
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim) |
|
|
|
|
|
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False) |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
) -> torch.Tensor: |
|
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] |
|
|
|
if position_ids is None: |
|
position_ids = self.position_ids[:, :seq_length] |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.token_embedding(input_ids) |
|
|
|
position_embeddings = self.position_embedding(position_ids) |
|
embeddings = inputs_embeds + position_embeddings |
|
|
|
return embeddings |
|
|
|
|
|
class EvaCLIPAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config, rope=None): |
|
super().__init__() |
|
self.config = config |
|
self.rope = rope |
|
self.embed_dim = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.embed_dim // self.num_heads |
|
if self.head_dim * self.num_heads != self.embed_dim: |
|
raise ValueError( |
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" |
|
f" {self.num_heads})." |
|
) |
|
self.scale = self.head_dim**-0.5 |
|
self.dropout = config.attention_dropout |
|
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.k_bias) |
|
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.v_bias) |
|
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.q_bias) |
|
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=True) |
|
subln = True |
|
self.inner_attn_ln = nn.LayerNorm(self.embed_dim) if subln else nn.Identity() |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
causal_attention_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
"""Input shape: Batch x Time x Channel""" |
|
|
|
bsz, tgt_len, embed_dim = hidden_states.size() |
|
|
|
|
|
query_states = self.q_proj(hidden_states) * self.scale |
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) |
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) |
|
|
|
proj_shape = (bsz * self.num_heads, -1, self.head_dim) |
|
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) |
|
key_states = key_states.view(*proj_shape) |
|
value_states = value_states.view(*proj_shape) |
|
|
|
src_len = key_states.size(1) |
|
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) |
|
|
|
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" |
|
f" {attn_weights.size()}" |
|
) |
|
|
|
|
|
if causal_attention_mask is not None: |
|
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" |
|
f" {causal_attention_mask.size()}" |
|
) |
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask |
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, tgt_len, src_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" |
|
) |
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask |
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1) |
|
|
|
if output_attentions: |
|
|
|
|
|
|
|
|
|
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) |
|
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) |
|
else: |
|
attn_weights_reshaped = None |
|
|
|
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) |
|
|
|
attn_output = torch.bmm(attn_probs, value_states) |
|
|
|
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) |
|
attn_output = attn_output.transpose(1, 2) |
|
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim) |
|
|
|
attn_output = self.inner_attn_ln(attn_output) |
|
attn_output = self.out_proj(attn_output) |
|
|
|
return attn_output, attn_weights_reshaped |
|
|
|
class EvaCLIPTextAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.embed_dim = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.embed_dim // self.num_heads |
|
if self.head_dim * self.num_heads != self.embed_dim: |
|
raise ValueError( |
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" |
|
f" {self.num_heads})." |
|
) |
|
self.scale = self.head_dim**-0.5 |
|
self.dropout = config.attention_dropout |
|
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.k_bias) |
|
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.v_bias) |
|
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.q_bias) |
|
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=True) |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
causal_attention_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
"""Input shape: Batch x Time x Channel""" |
|
|
|
bsz, tgt_len, embed_dim = hidden_states.size() |
|
|
|
|
|
query_states = self.q_proj(hidden_states) * self.scale |
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) |
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) |
|
|
|
proj_shape = (bsz * self.num_heads, -1, self.head_dim) |
|
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) |
|
key_states = key_states.view(*proj_shape) |
|
value_states = value_states.view(*proj_shape) |
|
|
|
if self.rope: |
|
|
|
q_t = query_states[:, :, 1:, :] |
|
ro_q_t = self.rope(q_t) |
|
query_states = torch.cat((query_states[:, :, :1, :], ro_q_t), -2).type_as(value_states) |
|
|
|
k_t = key_states[:, :, 1:, :] |
|
ro_k_t = self.rope(k_t) |
|
key_states = torch.cat((key_states[:, :, :1, :], ro_k_t), -2).type_as(value_states) |
|
|
|
src_len = key_states.size(1) |
|
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) |
|
|
|
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" |
|
f" {attn_weights.size()}" |
|
) |
|
|
|
|
|
if causal_attention_mask is not None: |
|
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" |
|
f" {causal_attention_mask.size()}" |
|
) |
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask |
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, tgt_len, src_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" |
|
) |
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask |
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1) |
|
|
|
if output_attentions: |
|
|
|
|
|
|
|
|
|
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) |
|
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) |
|
else: |
|
attn_weights_reshaped = None |
|
|
|
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) |
|
|
|
attn_output = torch.bmm(attn_probs, value_states) |
|
|
|
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) |
|
attn_output = attn_output.transpose(1, 2) |
|
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim) |
|
|
|
attn_output = self.out_proj(attn_output) |
|
|
|
return attn_output, attn_weights_reshaped |
|
|
|
class SwiGLU(nn.Module): |
|
def __init__(self, in_features=1024, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0., |
|
norm_layer=nn.LayerNorm, subln=True): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
|
|
self.w1 = nn.Linear(in_features, hidden_features) |
|
self.w2 = nn.Linear(in_features, hidden_features) |
|
|
|
self.act = act_layer() |
|
self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity() |
|
self.w3 = nn.Linear(hidden_features, out_features) |
|
|
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x1 = self.w1(x) |
|
x2 = self.w2(x) |
|
hidden = self.act(x1) * x2 |
|
x = self.ffn_ln(hidden) |
|
x = self.w3(x) |
|
x = self.dr |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class EvaCLIPMLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) |
|
self.fc2 = nn.Linear(config.hidden_size, config.intermediate_size) |
|
|
|
self.act = nn.SiLU() |
|
subln = True |
|
self.ffn_ln = nn.LayerNorm(config.intermediate_size) if subln else nn.Identity() |
|
self.fc3 = nn.Linear(config.intermediate_size, config.hidden_size) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
x = hidden_states |
|
x1 = self.fc1(x) |
|
x2 = self.fc2(x) |
|
hidden = self.act(x1) * x2 |
|
x = self.ffn_ln(hidden) |
|
x = self.fc3(x) |
|
return x |
|
|
|
|
|
class EvaCLIPEncoderLayer(nn.Module): |
|
def __init__(self, config: EvaCLIPConfig, rope=None): |
|
super().__init__() |
|
self.config = config |
|
self.rope = rope |
|
self.embed_dim = config.hidden_size |
|
self.post_layernorm = config.post_layernorm if config.post_layernorm is not None else False |
|
self.self_attn = EvaCLIPAttention(config, self.rope) |
|
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) |
|
self.mlp = EvaCLIPMLP(config) |
|
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
causal_attention_mask: torch.Tensor, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.FloatTensor]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`): attention mask of size |
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. |
|
`(config.encoder_attention_heads,)`. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
""" |
|
residual = hidden_states |
|
|
|
if not self.post_layernorm: |
|
hidden_states = self.layer_norm1(hidden_states) |
|
hidden_states, attn_weights = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
causal_attention_mask=causal_attention_mask, |
|
output_attentions=output_attentions, |
|
) |
|
if self.post_layernorm: |
|
hidden_states = self.layer_norm1(hidden_states) |
|
hidden_states = residual + hidden_states |
|
residual = hidden_states |
|
if not self.post_layernorm: |
|
hidden_states = self.layer_norm2(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
if self.post_layernorm: |
|
hidden_states = self.layer_norm2(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
class EvaCLIPPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = EvaCLIPConfig |
|
base_model_prefix = "clip" |
|
supports_gradient_checkpointing = True |
|
_keys_to_ignore_on_load_missing = [r"position_ids"] |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
factor = self.config.initializer_factor |
|
if isinstance(module, EvaCLIPTextEmbeddings): |
|
module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) |
|
module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) |
|
elif isinstance(module, EvaCLIPVisionEmbeddings): |
|
factor = self.config.initializer_factor |
|
nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor) |
|
nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor) |
|
nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor) |
|
elif isinstance(module, EvaCLIPAttention): |
|
factor = self.config.initializer_factor |
|
in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor |
|
out_proj_std = (module.embed_dim**-0.5) * factor |
|
nn.init.normal_(module.q_proj.weight, std=in_proj_std) |
|
nn.init.normal_(module.k_proj.weight, std=in_proj_std) |
|
nn.init.normal_(module.v_proj.weight, std=in_proj_std) |
|
nn.init.normal_(module.out_proj.weight, std=out_proj_std) |
|
elif isinstance(module, EvaCLIPMLP): |
|
factor = self.config.initializer_factor |
|
in_proj_std = ( |
|
(module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor |
|
) |
|
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor |
|
nn.init.normal_(module.fc1.weight, std=fc_std) |
|
|
|
nn.init.normal_(module.fc2.weight, std=fc_std) |
|
nn.init.normal_(module.fc3.weight, std=in_proj_std) |
|
elif isinstance(module, EvaCLIPModel): |
|
|
|
|
|
|
|
|
|
nn.init.normal_( |
|
module.visual_projection.weight, |
|
std=module.vision_embed_dim**-0.5 * self.config.initializer_factor, |
|
) |
|
elif isinstance(module, EvaCLIPVisionModelWithProjection): |
|
nn.init.normal_( |
|
module.visual_projection.weight, |
|
std=self.config.hidden_size**-0.5 * self.config.initializer_factor, |
|
) |
|
elif isinstance(module, EvaCLIPTextModelWithProjection): |
|
nn.init.normal_( |
|
module.text_projection.weight, |
|
std=self.config.hidden_size**-0.5 * self.config.initializer_factor, |
|
) |
|
|
|
if isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
if isinstance(module, nn.Linear) and module.bias is not None: |
|
module.bias.data.zero_() |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, EvaCLIPEncoder): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
EvaCLIP_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`CLIPConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
EvaCLIP_TEXT_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.max_position_embeddings - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
EvaCLIP_VISION_INPUTS_DOCSTRING = r""" |
|
Args: |
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using |
|
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
EvaCLIP_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.max_position_embeddings - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using |
|
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. |
|
return_loss (`bool`, *optional*): |
|
Whether or not to return the contrastive loss. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
class EvaCLIPEncoder(nn.Module): |
|
""" |
|
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a |
|
[`CLIPEncoderLayer`]. |
|
|
|
Args: |
|
config: CLIPConfig |
|
""" |
|
|
|
def __init__(self, config: EvaCLIPConfig, rope=False): |
|
super().__init__() |
|
self.config = config |
|
self.layers = nn.ModuleList([EvaCLIPEncoderLayer(config, rope) for _ in range(config.num_hidden_layers)]) |
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
inputs_embeds, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
causal_attention_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutput]: |
|
r""" |
|
Args: |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. |
|
This is useful if you want more control over how to convert `input_ids` indices into associated vectors |
|
than the model's internal embedding lookup matrix. |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Causal mask for the text model. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors |
|
for more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
encoder_states = () if output_hidden_states else None |
|
all_attentions = () if output_attentions else None |
|
|
|
hidden_states = inputs_embeds |
|
for idx, encoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs, output_attentions) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(encoder_layer), |
|
hidden_states, |
|
attention_mask, |
|
causal_attention_mask, |
|
) |
|
else: |
|
layer_outputs = encoder_layer( |
|
hidden_states, |
|
attention_mask, |
|
causal_attention_mask, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_attentions = all_attentions + (layer_outputs[1],) |
|
|
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) |
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions |
|
) |
|
|
|
|
|
class EvaCLIPTextTransformer(nn.Module): |
|
def __init__(self, config: EvaCLIPTextConfig): |
|
super().__init__() |
|
self.config = config |
|
embed_dim = config.hidden_size |
|
self.embeddings = EvaCLIPTextEmbeddings(config) |
|
self.encoder = EvaCLIPEncoder(config) |
|
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) |
|
|
|
@add_start_docstrings_to_model_forward(EvaCLIP_TEXT_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=EvaCLIPTextConfig) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPooling]: |
|
r""" |
|
Returns: |
|
|
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if input_ids is None: |
|
raise ValueError("You have to specify input_ids") |
|
|
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
|
|
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids) |
|
|
|
bsz, seq_len = input_shape |
|
|
|
|
|
causal_attention_mask = self._build_causal_attention_mask(bsz, seq_len, hidden_states.dtype).to( |
|
hidden_states.device |
|
) |
|
|
|
if attention_mask is not None: |
|
|
|
attention_mask = _expand_mask(attention_mask, hidden_states.dtype) |
|
|
|
encoder_outputs = self.encoder( |
|
inputs_embeds=hidden_states, |
|
attention_mask=attention_mask, |
|
causal_attention_mask=causal_attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
last_hidden_state = encoder_outputs[0] |
|
last_hidden_state = self.final_layer_norm(last_hidden_state) |
|
|
|
|
|
|
|
|
|
pooled_output = last_hidden_state[ |
|
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), |
|
input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1), |
|
] |
|
|
|
if not return_dict: |
|
return (last_hidden_state, pooled_output) + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPooling( |
|
last_hidden_state=last_hidden_state, |
|
pooler_output=pooled_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
def _build_causal_attention_mask(self, bsz, seq_len, dtype): |
|
|
|
|
|
mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype) |
|
mask.fill_(torch.tensor(torch.finfo(dtype).min)) |
|
mask.triu_(1) |
|
mask = mask.unsqueeze(1) |
|
return mask |
|
|
|
|
|
@add_start_docstrings( |
|
"""The text model from EvaCLIP without any head or projection on top.""", |
|
EvaCLIP_START_DOCSTRING, |
|
) |
|
class EvaCLIPTextModel(EvaCLIPPreTrainedModel): |
|
config_class = EvaCLIPTextConfig |
|
|
|
_no_split_modules = ["EvaCLIPEncoderLayer"] |
|
|
|
def __init__(self, config: EvaCLIPTextConfig): |
|
super().__init__(config) |
|
self.text_model = EvaCLIPTextTransformer(config) |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> nn.Module: |
|
return self.text_model.embeddings.token_embedding |
|
|
|
def set_input_embeddings(self, value): |
|
self.text_model.embeddings.token_embedding = value |
|
|
|
@add_start_docstrings_to_model_forward(EvaCLIP_TEXT_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=EvaCLIPTextConfig) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPooling]: |
|
r""" |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, CLIPTextModel |
|
|
|
>>> model = CLIPTextModel.from_pretrained("openai/clip-vit-base-patch32") |
|
>>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32") |
|
|
|
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") |
|
|
|
>>> outputs = model(**inputs) |
|
>>> last_hidden_state = outputs.last_hidden_state |
|
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
return self.text_model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
|
|
class EvaCLIPVisionTransformer(nn.Module): |
|
def __init__(self, config: EvaCLIPVisionConfig): |
|
super().__init__() |
|
self.config = config |
|
embed_dim = config.hidden_size |
|
|
|
rope = True |
|
pt_hw_seq_len=16 |
|
intp_freq=True |
|
if rope: |
|
half_head_dim = config.hidden_size // config.num_attention_heads // 2 |
|
hw_seq_len = config.image_size // config.patch_size |
|
self.rope = VisionRotaryEmbeddingFast( |
|
dim=half_head_dim, |
|
pt_seq_len=pt_hw_seq_len, |
|
ft_seq_len=hw_seq_len if intp_freq else None, |
|
|
|
) |
|
else: |
|
self.rope = None |
|
|
|
self.embeddings = EvaCLIPVisionEmbeddings(config) |
|
self.encoder = EvaCLIPEncoder(config, self.rope) |
|
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) |
|
|
|
@add_start_docstrings_to_model_forward(EvaCLIP_VISION_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=EvaCLIPVisionConfig) |
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPooling]: |
|
r""" |
|
Returns: |
|
|
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if pixel_values is None: |
|
raise ValueError("You have to specify pixel_values") |
|
|
|
hidden_states = self.embeddings(pixel_values) |
|
|
|
encoder_outputs = self.encoder( |
|
inputs_embeds=hidden_states, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
last_hidden_state = encoder_outputs[0] |
|
pooled_output = last_hidden_state[:, 0, :] |
|
pooled_output = self.post_layernorm(pooled_output) |
|
|
|
if not return_dict: |
|
return (last_hidden_state, pooled_output) + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPooling( |
|
last_hidden_state=last_hidden_state, |
|
pooler_output=pooled_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
"""The vision model from EvaCLIP without any head or projection on top.""", |
|
EvaCLIP_START_DOCSTRING, |
|
) |
|
class EvaCLIPVisionModel(EvaCLIPPreTrainedModel): |
|
config_class = EvaCLIPVisionConfig |
|
main_input_name = "pixel_values" |
|
|
|
def __init__(self, config: EvaCLIPVisionConfig): |
|
super().__init__(config) |
|
self.vision_model = EvaCLIPVisionTransformer(config) |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> nn.Module: |
|
return self.vision_model.embeddings.patch_embedding |
|
|
|
@add_start_docstrings_to_model_forward(EvaCLIP_VISION_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=EvaCLIPVisionConfig) |
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPooling]: |
|
r""" |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, CLIPVisionModel |
|
|
|
>>> model = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32") |
|
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> inputs = processor(images=image, return_tensors="pt") |
|
|
|
>>> outputs = model(**inputs) |
|
>>> last_hidden_state = outputs.last_hidden_state |
|
>>> pooled_output = outputs.pooler_output # pooled CLS states |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
return self.vision_model( |
|
pixel_values=pixel_values, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
|
|
@add_start_docstrings(EvaCLIP_START_DOCSTRING) |
|
class EvaCLIPModel(EvaCLIPPreTrainedModel): |
|
config_class = EvaCLIPConfig |
|
|
|
def __init__(self, config: EvaCLIPConfig): |
|
super().__init__(config) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if not (type(config.vision_config).__name__ == "EvaCLIPVisionConfig"): |
|
raise ValueError( |
|
"config.vision_config is expected to be of type EvaCLIPVisionConfig but is of type" |
|
f" {type(config.vision_config)}." |
|
) |
|
|
|
text_config = config.text_config |
|
vision_config = config.vision_config |
|
|
|
self.projection_dim = config.projection_dim |
|
self.text_embed_dim = text_config.hidden_size |
|
self.vision_embed_dim = vision_config.hidden_size |
|
|
|
|
|
self.vision_model = EvaCLIPVisionTransformer(vision_config) |
|
|
|
self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=True) |
|
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(EvaCLIP_VISION_INPUTS_DOCSTRING) |
|
def get_image_features( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> torch.FloatTensor: |
|
r""" |
|
Returns: |
|
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by |
|
applying the projection layer to the pooled output of [`EvaCLIPVisionModel`]. |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, CLIPModel |
|
|
|
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") |
|
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> inputs = processor(images=image, return_tensors="pt") |
|
|
|
>>> image_features = model.get_image_features(**inputs) |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
vision_outputs = self.vision_model( |
|
pixel_values=pixel_values, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
pooled_output = vision_outputs[1] |
|
image_features = self.visual_projection(pooled_output) |
|
|
|
return image_features |
|
|
|
@add_start_docstrings_to_model_forward(EvaCLIP_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=EvaCLIPOutput, config_class=EvaCLIPConfig) |
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, EvaCLIPOutput]: |
|
r""" |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, CLIPModel |
|
|
|
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") |
|
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> inputs = processor( |
|
... images=image, return_tensors="pt" |
|
... ) |
|
|
|
>>> outputs = model(**inputs) |
|
>>> image_embeds = outputs.image_embeds # this is the image embedding |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
vision_outputs = self.vision_model( |
|
pixel_values=pixel_values, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
image_embeds = vision_outputs[1] |
|
image_embeds = self.visual_projection(image_embeds) |
|
|
|
|
|
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True) |
|
if not return_dict: |
|
output = (image_embeds, vision_outputs) |
|
return output |
|
|
|
return EvaCLIPOutput( |
|
loss=None, |
|
logits_per_image=None, |
|
logits_per_text=None, |
|
text_embeds=None, |
|
image_embeds=image_embeds, |
|
text_model_output=None, |
|
vision_model_output=vision_outputs, |
|
) |
|
|
|
@add_start_docstrings( |
|
""" |
|
EvaCLIP Text Model with a projection layer on top (a linear layer on top of the pooled output). |
|
""", |
|
EvaCLIP_START_DOCSTRING, |
|
) |
|
class EvaCLIPTextModelWithProjection(EvaCLIPPreTrainedModel): |
|
config_class = EvaCLIPTextConfig |
|
|
|
_no_split_modules = ["EvaCLIPEncoderLayer"] |
|
|
|
def __init__(self, config: EvaCLIPTextConfig): |
|
super().__init__(config) |
|
|
|
self.text_model = EvaCLIPTextTransformer(config) |
|
|
|
self.text_projection = nn.Linear(config.hidden_size, config.projection_dim, bias=False) |
|
|
|
|
|
self.posxt_init() |
|
|
|
def get_input_embeddings(self) -> nn.Module: |
|
return self.text_model.embeddings.token_embedding |
|
|
|
def set_input_embeddings(self, value): |
|
self.text_model.embeddings.token_embedding = value |
|
|
|
@add_start_docstrings_to_model_forward(EvaCLIP_TEXT_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=EvaCLIPTextModelOutput, config_class=EvaCLIPTextConfig) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, EvaCLIPTextModelOutput]: |
|
r""" |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, CLIPTextModelWithProjection |
|
|
|
>>> model = CLIPTextModelWithProjection.from_pretrained("openai/clip-vit-base-patch32") |
|
>>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32") |
|
|
|
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") |
|
|
|
>>> outputs = model(**inputs) |
|
>>> text_embeds = outputs.text_embeds |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
text_outputs = self.text_model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
pooled_output = text_outputs[1] |
|
|
|
text_embeds = self.text_projection(pooled_output) |
|
|
|
if not return_dict: |
|
outputs = (text_embeds, text_outputs[0]) + text_outputs[2:] |
|
return tuple(output for output in outputs if output is not None) |
|
|
|
return EvaCLIPTextModelOutput( |
|
text_embeds=text_embeds, |
|
last_hidden_state=text_outputs.last_hidden_state, |
|
hidden_states=text_outputs.hidden_states, |
|
attentions=text_outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
EvaCLIP Vision Model with a projection layer on top (a linear layer on top of the pooled output). |
|
""", |
|
EvaCLIP_START_DOCSTRING, |
|
) |
|
class EvaCLIPVisionModelWithProjection(EvaCLIPPreTrainedModel): |
|
config_class = EvaCLIPVisionConfig |
|
main_input_name = "pixel_values" |
|
|
|
def __init__(self, config: EvaCLIPVisionConfig): |
|
super().__init__(config) |
|
|
|
self.vision_model = EvaCLIPVisionTransformer(config) |
|
|
|
self.visual_projection = nn.Linear(config.hidden_size, config.projection_dim, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> nn.Module: |
|
return self.vision_model.embeddings.patch_embedding |
|
|
|
@add_start_docstrings_to_model_forward(EvaCLIP_VISION_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=EvaCLIPVisionModelOutput, config_class=EvaCLIPVisionConfig) |
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, EvaCLIPVisionModelOutput]: |
|
r""" |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, CLIPVisionModelWithProjection |
|
|
|
>>> model = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-base-patch32") |
|
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> inputs = processor(images=image, return_tensors="pt") |
|
|
|
>>> outputs = model(**inputs) |
|
>>> image_embeds = outputs.image_embeds |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
vision_outputs = self.vision_model( |
|
pixel_values=pixel_values, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
pooled_output = vision_outputs[1] |
|
|
|
image_embeds = self.visual_projection(pooled_output) |
|
|
|
if not return_dict: |
|
outputs = (image_embeds, vision_outputs[0]) + vision_outputs[2:] |
|
return tuple(output for output in outputs if output is not None) |
|
|
|
return EvaCLIPVisionModelOutput( |
|
image_embeds=image_embeds, |
|
last_hidden_state=vision_outputs.last_hidden_state, |
|
hidden_states=vision_outputs.hidden_states, |
|
attentions=vision_outputs.attentions, |
|
) |
|
|