--- license: mit --- ## Usage ### Pytorch version pip install llm2vec ```python import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" import torch from torch import nn from llm2vec import LLM2Vec from transformers import AutoTokenizer, AutoModel, AutoConfig class LLM2VecWrapper(LLM2Vec): def prepare_for_tokenization(self, text): text = ( "<|start_header_id|>user<|end_header_id|>\n\n" + text.strip() + "<|eot_id|>" ) return text class LlamaVec_1B_FeatureExtractor(nn.Module): def __init__(self): super().__init__() model_path = 'microsoft/LLM2CLIP-Llama-3.2-1B-Instruct-CC-Finetuned' config = AutoConfig.from_pretrained(model_path) model = AutoModel.from_pretrained(model_path, config=config, trust_remote_code=True, torch_dtype=torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained(model_path) tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "left" self.l2v = LLM2VecWrapper(model, tokenizer, pooling_mode="mean", max_length=512, skip_instruction=True) def extract_features(self, text): with torch.amp.autocast('cuda'): reps_norm = self.l2v.encode(text) reps_norm = torch.nn.functional.normalize(reps_norm, p=2, dim=1) return {"embeds": reps_norm} text_model = LlamaVec_1B_FeatureExtractor() captions = ["this is a test"] embeddings = text_model.extract_features(captions) ``` ## BibTeX & Citation ``` @misc{huang2024llm2clippowerfullanguagemodel, title={LLM2CLIP: Powerful Language Model Unlock Richer Visual Representation}, author={Weiquan Huang and Aoqi Wu and Yifan Yang and Xufang Luo and Yuqing Yang and Liang Hu and Qi Dai and Xiyang Dai and Dongdong Chen and Chong Luo and Lili Qiu}, year={2024}, eprint={2411.04997}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2411.04997}, } ```