jw2yang commited on
Commit
c5e6f8f
·
verified ·
1 Parent(s): c375340

Upload configuration_magma.py

Browse files
Files changed (1) hide show
  1. configuration_magma.py +144 -0
configuration_magma.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """Magma model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.utils import logging
24
+ from transformers.models.auto import CONFIG_MAPPING
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+
29
+ class MagmaConfig(PretrainedConfig):
30
+ r"""
31
+ This is the configuration class to store the configuration of a [`MagmaModel`]. It is used to instantiate an Magma
32
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
33
+ defaults will yield a similar configuration to that of the Magma-7B.
34
+
35
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
36
+ documentation from [`PretrainedConfig`] for more information.
37
+
38
+
39
+ Args:
40
+ vocab_size (`int`, *optional*, defaults to 32000):
41
+ Vocabulary size of the Magma model. Defines the number of different tokens that can be represented by the
42
+ `inputs_ids` passed when calling [`MagmaModel`]
43
+ hidden_size (`int`, *optional*, defaults to 4096):
44
+ Dimension of the hidden representations.
45
+ intermediate_size (`int`, *optional*, defaults to 11008):
46
+ Dimension of the MLP representations.
47
+ num_hidden_layers (`int`, *optional*, defaults to 32):
48
+ Number of hidden layers in the Transformer decoder.
49
+ num_attention_heads (`int`, *optional*, defaults to 32):
50
+ Number of attention heads for each attention layer in the Transformer decoder.
51
+ num_key_value_heads (`int`, *optional*):
52
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
53
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
54
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
55
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
56
+ by meanpooling all the original heads within that group. For more details checkout [this
57
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
58
+ `num_attention_heads`.
59
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
60
+ The non-linear activation function (function or string) in the decoder.
61
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
62
+ The maximum sequence length that this model might ever be used with. Magma 1 supports up to 2048 tokens,
63
+ Magma 2 up to 4096, CodeMagma up to 16384.
64
+ initializer_range (`float`, *optional*, defaults to 0.02):
65
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
66
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
67
+ The epsilon used by the rms normalization layers.
68
+ use_cache (`bool`, *optional*, defaults to `True`):
69
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
70
+ relevant if `config.is_decoder=True`.
71
+ pad_token_id (`int`, *optional*):
72
+ Padding token id.
73
+ bos_token_id (`int`, *optional*, defaults to 1):
74
+ Beginning of stream token id.
75
+ eos_token_id (`int`, *optional*, defaults to 2):
76
+ End of stream token id.
77
+ pretraining_tp (`int`, *optional*, defaults to 1):
78
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
79
+ document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to understand more about it. This value is
80
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
81
+ issue](https://github.com/pytorch/pytorch/issues/76232).
82
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
83
+ Whether to tie weight embeddings
84
+ rope_theta (`float`, *optional*, defaults to 10000.0):
85
+ The base period of the RoPE embeddings.
86
+ rope_scaling (`Dict`, *optional*):
87
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
88
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
89
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
90
+ `max_position_embeddings` to the expected new maximum.
91
+ attention_bias (`bool`, *optional*, defaults to `False`):
92
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
93
+ attention_dropout (`float`, *optional*, defaults to 0.0):
94
+ The dropout ratio for the attention probabilities.
95
+ mlp_bias (`bool`, *optional*, defaults to `False`):
96
+ Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
97
+
98
+ ```python
99
+ >>> from transformers import MagmaModel, MagmaConfig
100
+
101
+ >>> # Initializing a Magma magma-7b style configuration
102
+ >>> configuration = MagmaConfig()
103
+
104
+ >>> # Initializing a model from the magma-7b style configuration
105
+ >>> model = MagmaModel(configuration)
106
+
107
+ >>> # Accessing the model configuration
108
+ >>> configuration = model.config
109
+ ```"""
110
+
111
+ model_type = "magma"
112
+ keys_to_ignore_at_inference = ["past_key_values"]
113
+
114
+ def __init__(
115
+ self,
116
+ vision_config=None,
117
+ text_config=None,
118
+ image_token_index=None,
119
+ tie_word_embeddings=False,
120
+ **kwargs,
121
+ ):
122
+ self.vision_config = vision_config
123
+ self.image_token_index = image_token_index
124
+
125
+ if isinstance(text_config, dict):
126
+ text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama"
127
+ text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
128
+ elif text_config is None:
129
+ if "model_type" in kwargs:
130
+ text_config = CONFIG_MAPPING[kwargs["model_type"]](**kwargs)
131
+
132
+ if text_config is not None:
133
+ # copy all variables in text_config to self
134
+ for key, value in text_config.__dict__.items():
135
+ if not key.startswith("_") and not key.startswith("__"):
136
+ setattr(self, key, value)
137
+ self.text_config = text_config
138
+ else:
139
+ self.text_config = None
140
+
141
+ super().__init__(
142
+ tie_word_embeddings=tie_word_embeddings,
143
+ **kwargs,
144
+ )