Update README.md
Browse files
README.md
CHANGED
@@ -98,6 +98,42 @@ analysis is needed to assess potential harm or bias in the proposed application.
|
|
98 |
|
99 |
## Getting started with Orca 2
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
**Safe inference with Azure AI Content Safety**
|
102 |
|
103 |
The usage of [Azure AI Content Safety](https://azure.microsoft.com/en-us/products/ai-services/ai-content-safety/) on top of model prediction is strongly encouraged
|
|
|
98 |
|
99 |
## Getting started with Orca 2
|
100 |
|
101 |
+
**Inference with Hugging Face library**
|
102 |
+
|
103 |
+
```python
|
104 |
+
import transformers
|
105 |
+
import torch
|
106 |
+
|
107 |
+
model_path = 'microsoft/Orca-2-7b'
|
108 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
109 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(model_path)
|
110 |
+
model.to(device)
|
111 |
+
|
112 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
113 |
+
model_path,
|
114 |
+
model_max_length=4096,
|
115 |
+
padding_side="right",
|
116 |
+
use_fast=False,
|
117 |
+
add_special_tokens=False,
|
118 |
+
)
|
119 |
+
|
120 |
+
system_message = "You are Orca, an AI language model created by Microsoft. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior."
|
121 |
+
user_message = "\" \n :You can't just say, \"\"that's crap\"\" and remove it without gaining a consensus. You already know this, based on your block history. —/ \" \nIs the comment obscene? \nOptions : Yes, No."
|
122 |
+
|
123 |
+
# We use Chat Markup Language https://github.com/MicrosoftDocs/azure-docs/blob/main/articles/ai-services/openai/includes/chat-markup-language.md#working-with-chat-markup-language-chatml
|
124 |
+
prompt = f"<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{user_message}<|im_end|>\n<|im_start|>assistant"
|
125 |
+
|
126 |
+
inputs = tokenizer(prompt, return_tensors='pt')
|
127 |
+
inputs = inputs.to(device)
|
128 |
+
|
129 |
+
output_ids = model.generate(inputs["input_ids"], max_length=4096, do_sample=False, temperature=0.0, use_cache=True)
|
130 |
+
sequence_length = inputs["input_ids"].shape[1]
|
131 |
+
new_output_ids = output_ids[:, sequence_length:]
|
132 |
+
answers = tokenizer.batch_decode(new_output_ids, skip_special_tokens=True)
|
133 |
+
|
134 |
+
print(answers)
|
135 |
+
```
|
136 |
+
|
137 |
**Safe inference with Azure AI Content Safety**
|
138 |
|
139 |
The usage of [Azure AI Content Safety](https://azure.microsoft.com/en-us/products/ai-services/ai-content-safety/) on top of model prediction is strongly encouraged
|