|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Phi-3 model configuration""" |
|
|
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
PHI3_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"microsoft/Phi-3-mini-4k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json", |
|
"microsoft/Phi-3-mini-128k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json", |
|
} |
|
|
|
|
|
class Phi3Config(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3 |
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to that of the |
|
[microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct). |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 32064): |
|
Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`Phi3Model`]. |
|
hidden_size (`int`, *optional*, defaults to 3072): |
|
Dimension of the hidden representations. |
|
intermediate_size (`int`, *optional*, defaults to 8192): |
|
Dimension of the MLP representations. |
|
num_hidden_layers (`int`, *optional*, defaults to 32): |
|
Number of hidden layers in the Transformer decoder. |
|
num_attention_heads (`int`, *optional*, defaults to 32): |
|
Number of attention heads for each attention layer in the Transformer decoder. |
|
num_key_value_heads (`int`, *optional*): |
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If |
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if |
|
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When |
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed |
|
by meanpooling all the original heads within that group. For more details checkout [this |
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to |
|
`num_attention_heads`. |
|
resid_pdrop (`float`, *optional*, defaults to 0.0): |
|
Dropout probability for mlp outputs. |
|
embd_pdrop (`int`, *optional*, defaults to 0.0): |
|
The dropout ratio for the embeddings. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio after computing the attention scores. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): |
|
The non-linear activation function (function or string) in the decoder. |
|
max_position_embeddings (`int`, *optional*, defaults to 4096): |
|
The maximum sequence length that this model might ever be used with. |
|
original_max_position_embeddings (`int`, *optional*, defaults to 4096): |
|
The maximum sequence length that this model was trained with. This is used to determine the size of the |
|
original RoPE embeddings when using long scaling. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-05): |
|
The epsilon used by the rms normalization layers. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not. |
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
Whether to tie weight embeddings |
|
rope_theta (`float`, *optional*, defaults to 10000.0): |
|
The base period of the RoPE embeddings. |
|
rope_scaling (`dict`, *optional*, defaults to `None`): |
|
The scaling factor for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must |
|
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be `longrope` and |
|
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size |
|
divided by the number of attention heads divided by 2. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import Phi3Model, Phi3Config |
|
|
|
>>> # Initializing a Phi-3 style configuration |
|
>>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct") |
|
|
|
>>> # Initializing a model from the configuration |
|
>>> model = Phi3Model(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "phi3" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=32064, |
|
hidden_size=3072, |
|
intermediate_size=8192, |
|
num_hidden_layers=32, |
|
num_attention_heads=32, |
|
num_key_value_heads=None, |
|
resid_pdrop=0.0, |
|
embd_pdrop=0.0, |
|
attention_dropout=0.0, |
|
hidden_act="silu", |
|
max_position_embeddings=4096, |
|
original_max_position_embeddings=4096, |
|
initializer_range=0.02, |
|
rms_norm_eps=1e-5, |
|
use_cache=True, |
|
tie_word_embeddings=False, |
|
rope_theta=10000.0, |
|
rope_scaling=None, |
|
eos_token_id=32000, |
|
pad_token_id=32000, |
|
sliding_window=None, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
|
|
if num_key_value_heads is None: |
|
num_key_value_heads = num_attention_heads |
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
self.resid_pdrop = resid_pdrop |
|
self.embd_pdrop = embd_pdrop |
|
self.attention_dropout = attention_dropout |
|
self.hidden_act = hidden_act |
|
self.max_position_embeddings = max_position_embeddings |
|
self.original_max_position_embeddings = original_max_position_embeddings |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
self.rope_scaling = rope_scaling |
|
self.sliding_window = sliding_window |
|
|
|
super().__init__( |
|
eos_token_id=eos_token_id, |
|
pad_token_id=pad_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|
|
def _rope_scaling_validation(self): |
|
if self.rope_scaling is None: |
|
return |
|
|
|
assert ( |
|
(isinstance(self.rope_scaling, dict)) |
|
and ("type" in self.rope_scaling) |
|
and ("short_factor" in self.rope_scaling) |
|
and ("long_factor" in self.rope_scaling) |
|
), ( |
|
"`rope_scaling` must be a dictionary with three keys: `type`, `short_factor` and `long_factor`, " |
|
f"got {self.rope_scaling}." |
|
) |
|
|
|
assert self.rope_scaling["type"].lower() == "longrope", "RoPE scaling type must be `longrope`." |
|
|
|
short_factor = self.rope_scaling["short_factor"] |
|
assert isinstance(short_factor, list) and all( |
|
[isinstance(x, (int, float)) for x in short_factor] |
|
), f"RoPE scaling factor must be a list of numbers, got {short_factor}." |
|
assert ( |
|
len(short_factor) == self.hidden_size // self.num_attention_heads // 2 |
|
), f"Length of RoPE scaling factor must be half of the attention head, got {short_factor}." |
|
|
|
long_factor = self.rope_scaling["long_factor"] |
|
assert isinstance(long_factor, list) and all( |
|
[isinstance(x, (int, float)) for x in long_factor] |
|
), f"RoPE scaling factor must be a list of numbers, got {long_factor}." |
|
assert ( |
|
len(long_factor) == self.hidden_size // self.num_attention_heads // 2 |
|
), f"Length of RoPE scaling factor must be half of the attention head, got {long_factor}." |
|
|