File size: 48,015 Bytes
4443628 25ca391 4443628 25ca391 4443628 25ca391 4443628 25ca391 4443628 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 |
import math
from typing import Any, Dict, Optional, List, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from transformers.modeling_outputs import SequenceClassifierOutputWithPast, CausalLMOutputWithPast, BaseModelOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from transformers.cache_utils import Cache, DynamicCache
from .triton_flash_blocksparse_attn import BlockSparseParams
from .triton_blocksparse_attention_layer import BlockSparseAttentionLayer
from .positional_embedding import RotaryEmbedding
from .configuration_phi3_small import Phi3SmallConfig
# Flash Attention Related Imports
is_flash_attention_available = False
try:
import flash_attn
if int(flash_attn.__version__.split('.')[0]) < 2:
from flash_attn.flash_attn_interface import (
flash_attn_func,
flash_attn_unpadded_kvpacked_func as flash_attn_varlen_kvpacked_func,
)
# rename `max_seqlen`
def flash_attn_varlen_qkvpacked_func(qkv, cu_seqlens, max_seqlen, dropout_p=0.0, **kwargs):
return flash_attn_func(qkv, cu_seqlens, dropout_p=dropout_p, max_s=max_seqlen, **kwargs)
else:
from flash_attn.flash_attn_interface import (
flash_attn_varlen_kvpacked_func,
)
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
is_flash_attention_available = True
except ImportError:
pass
logger = logging.get_logger(__name__)
LegacyCache = Tuple[Tuple[torch.FloatTensor]]
# Taken from https://github.com/allenai/allennlp/blob/main/allennlp/nn/util.py
def info_value_of_dtype(dtype: torch.dtype):
"""
Returns the `finfo` or `iinfo` object of a given PyTorch data type. Does not allow torch.bool.
"""
if dtype == torch.bool:
raise TypeError("Does not support torch.bool")
elif dtype.is_floating_point:
return torch.finfo(dtype)
else:
return torch.iinfo(dtype)
# Taken from https://github.com/allenai/allennlp/blob/main/allennlp/nn/util.py
def min_value_of_dtype(dtype: torch.dtype):
"""
Returns the minimum value of a given PyTorch data type. Does not allow torch.bool.
"""
return info_value_of_dtype(dtype).min
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
def _get_unpad_data(attention_mask):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
@torch.jit.script
def quick_gelu(x):
return x * torch.sigmoid(1.702 * x)
@torch.jit.script
def gegelu(input, limit: Optional[float] = None):
a_gelu, a_linear = input[..., ::2], input[..., 1::2]
if limit is not None:
a_gelu = torch.where(
torch.isinf(a_gelu), a_gelu, a_gelu.clamp(min=None, max=limit)
)
a_linear = torch.where(
torch.isinf(a_linear), a_linear, a_linear.clamp(min=-limit, max=limit)
)
out_gelu = quick_gelu(a_gelu)
return out_gelu * (a_linear + 1)
def collapse_first_n_dims(x: torch.Tensor, n: int) -> torch.Tensor:
"""
Collapse the first `n` dimensions of a tensor into a single dimension.
Args:
x (torch.Tensor): The input tensor.
n (int): The number of dimensions to collapse.
Returns:
torch.Tensor: The output tensor.
"""
return x.view(-1, *x.shape[n:])
def pad_tensor_to_next_mult_of(
tensor: torch.Tensor,
dim: int,
n: int,
) -> Tuple[torch.Tensor, int]:
"""
Pads a tensor along a specified dimension to the next multiple of a given number.
Args:
tensor (torch.Tensor): The input tensor.
dim (int): The dimension along which to pad the tensor.
n (int): The number to pad the tensor to the next multiple of.
Returns:
Tuple[torch.Tensor, int]: A tuple containing the padded tensor and the amount of padding added.
"""
residual = tensor.size(dim) % n
if residual == 0:
return tensor, 0
padding = n - residual
padding_tensor = torch.zeros((*tensor.size()[:dim], padding, *tensor.size()[dim + 1:]), device=tensor.device, dtype=tensor.dtype)
return torch.cat([tensor, padding_tensor], dim=dim), padding
def strip_padding_from_tensor(
tensor: torch.Tensor,
dim: int,
residual: int,
) -> torch.Tensor:
"""
Removes padding from a tensor along a specified dimension.
Args:
tensor (torch.Tensor): The input tensor.
dim (int): The dimension along which to remove padding.
residual (int): The amount of padding to remove.
Returns:
torch.Tensor: The tensor with padding removed along the specified dimension.
"""
return torch.narrow(tensor, dim, 0, tensor.size(dim) - residual)
class Phi3SmallMLP(nn.Module):
def __init__(self, config: Phi3SmallConfig):
super().__init__()
self.config = config
assert self.config.hidden_act == "gegelu", "Only `gegelu` is supported for the Phi-3-small model .."
self.hidden_size = config.hidden_size
self.gegelu_limit = config.gegelu_limit
self.intermediate_size = config.intermediate_size
self.up_proj = nn.Linear(self.hidden_size, 2 * self.intermediate_size)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size)
self.dropout = nn.Dropout(config.ffn_dropout_prob)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.dropout(
self.down_proj(
gegelu(self.up_proj(x), limit=self.gegelu_limit)
)
)
class Phi3SmallSelfAttention(nn.Module):
def __init__(self, config: Phi3SmallConfig, layer_idx: Optional[int] = None) -> None:
super().__init__()
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.hidden_size = config.hidden_size
# Number of Query Heads
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
# Number of Key Value Heads
self.num_key_value_heads = config.num_key_value_heads
self.num_q_per_kv = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_embedding_base = config.rope_embedding_base
self.rope_position_scale = config.rope_position_scale
self.is_causal = True
self.attention_dropout_rate = config.attention_dropout_prob
norm_factor = None
if config.mup_use_scaling:
norm_factor = self.head_dim / config.mup_attn_multiplier
else:
norm_factor = math.sqrt(self.head_dim)
self.softmax_scale = 1.0 / norm_factor
self.query_key_value = nn.Linear(self.hidden_size, (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim)
self.dense = nn.Linear(self.hidden_size, self.hidden_size)
self.blocksparse_params = None
# layer_idx is 0 indexed because that's what the KV Cache expects.
if self.config.dense_attention_every_n_layers and ((self.layer_idx + 1) % self.config.dense_attention_every_n_layers == 0):
logger.info(
f"Layer {layer_idx + 1} is using dense attention since it is divisible by "
f"{self.config.dense_attention_every_n_layers}"
)
assert is_flash_attention_available, "Flash Attention is not available, but is needed for dense attention"
else:
# BlockSparse related Parameters
self.blocksparse_params = BlockSparseParams.from_config(config)
if self.blocksparse:
active_head_range = None
"""
... note(bapatra)::
In case of tensor parallelism and while using the heterogeneous head patterns,
the active head range needs to be modified based on the tensor parallel rank
and the tensor parallel world size.
This is because in the case of heterogeneous head patterns, the kernel needs to know
which head is on which device, so that it can pick the corresponding blocksparse head
pattern correctly.
Example:
```python
if not self.blocksparse_params.homo_head_pattern:
tp_rank = torch.distributed.get_rank() % tp_world_size
num_heads_per_partition = num_heads // tp_world_size
active_head_range = (tp_rank * num_heads_per_partition, (tp_rank + 1) * num_heads_per_partition)
```
"""
self._blocksparse_layer = BlockSparseAttentionLayer(
n_heads=self.num_heads,
max_seq_len=self.max_position_embeddings,
sparse_block_size=self.blocksparse_params.block_size,
local_blocks=self.blocksparse_params.num_local_blocks,
vert_stride=self.blocksparse_params.vert_stride,
kernel_block_size=self.blocksparse_params.kernel_block_size,
homo_head=self.blocksparse_params.homo_head_pattern,
active_head_range=active_head_range,
)
self.rotary_emb = RotaryEmbedding.from_config(config)
@property
def blocksparse(self):
return self.blocksparse_params is not None
def _split_heads(self, mixed_x_layer: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
bs, sq, _ = mixed_x_layer.size()
r"""
The main idea is that we group tensors as
[bs, sq, (q00, q01, ... q0m, k0, v0), (q10, q11, ... q1m, k1, v1), ... (qn0, qn1, ... qnm, kn, vn)]
That ways, when the MP column sharding happens, this tensor will be sharded keeping all the
queries and keys intact. In order to get the correct qkv, we first break into groups, and then
index into the groups.
"""
intermediate_shape = (bs, sq, -1, (self.num_q_per_kv + 2), self.head_dim)
mixed_x_layer = mixed_x_layer.view(*intermediate_shape)
q = mixed_x_layer[:, :, :, :-2]
k = mixed_x_layer[:, :, :, [-2]]
v = mixed_x_layer[:, :, :, [-1]]
q, k, v = [
rearrange(
x,
"bs sq group nh hn -> bs sq (group nh) hn"
) for x in (q, k, v)
]
return q, k, v
# Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._unpad_input
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
if query_length == kv_seq_len:
query_layer = index_first_axis(
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
)
cu_seqlens_q = cu_seqlens_k
max_seqlen_in_batch_q = max_seqlen_in_batch_k
indices_q = indices_k
elif query_length == 1:
max_seqlen_in_batch_q = 1
cu_seqlens_q = torch.arange(
batch_size + 1, dtype=torch.int32, device=query_layer.device
) # There is a memcpy here, that is very bad.
indices_q = cu_seqlens_q[:-1]
query_layer = query_layer.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -query_length:]
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
return (
query_layer,
key_layer,
value_layer,
indices_q,
(cu_seqlens_q, cu_seqlens_k),
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
)
def _apply_blocksparse_attention(
self,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
attention_mask: Optional[torch.LongTensor],
return_attention_probs: bool = False,
) -> torch.Tensor:
"""
Applies blocksparse attention to the input tensors.
Args:
q (torch.Tensor): The query tensor of shape (bs, nqp, seq_len, hn).
k (torch.Tensor): The key tensor of shape (bs, nkp, seq_len, hn).
v (torch.Tensor): The value tensor of shape (bs, nkp, seq_len, hn).
attention_mask (Optional[torch.LongTensor]): The attention mask tensor of shape (bs, seq_len).
return_attention_probs (bool, optional): Whether to return attention probabilities. Defaults to False.
Returns:
torch.Tensor: The context layer tensor of shape (bs, nqp, seq_len, hn).
"""
assert not return_attention_probs, "return_attention_probs is not supported for blocksparse attention"
q, k, v = q.contiguous(), k.contiguous(), v.contiguous()
# shape: (bs, nqp, seq_len, hn)
if torch.is_grad_enabled():
# Training or non-batched inference
context_layer = self._blocksparse_layer(
q=q, k=k, v=v, sm_scale=self.softmax_scale
)
elif attention_mask is None:
if q.size(0) != 1:
logger.warning_once(
"You are attempting to do batched inference without passing the attention mask.\n"
"This is okay if you are running loglikelihood requests. However, if you want to do generation, "
"this probably won't work as expected. Please pass the attention mask to the forward function."
)
context_layer = self._blocksparse_layer(
q=q, k=k, v=v, sm_scale=self.softmax_scale
)
else:
"""
Shapes of tensors are as follows:
q: (bs, nqp, seq_len, hdim)
k: (bs, nkp, seq_len, hdim)
v: (bs, nkp, seq_len, hdim)
We first need to transpose the shapes to fit what the
kernel needs, and the reinvert it back at the end of the operations
"""
assert attention_mask.ndim == 2, "The kernel, like flash-attention-2, only supports 2d attention masks ..."
left_paddings = attention_mask.shape[1] - attention_mask.sum(dim=-1)
# shape: (bs, seq_len, nqp, hdim)
q = q.transpose(1, 2).contiguous()
# shape: (bs, seq_len, nkp, hdim)
k = k.transpose(1, 2).contiguous()
# shape: (bs, seq_len, nkp, hdim)
v = v.transpose(1, 2).contiguous()
context_layer = self._blocksparse_layer(
q=q, k=k, v=v, sm_scale=self.softmax_scale, left_paddings=left_paddings.to(torch.int32)
)
# shape: (bs, nqp, seq_len, hdim)
context_layer = context_layer.transpose(1, 2).contiguous()
return context_layer
def _apply_dense_attention(
self,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
attention_mask: torch.Tensor,
return_attention_probs: bool = False,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""
Apply dense attention
Args:
q (torch.Tensor):
The query tensor, shape: (bs, num_query_heads, seq_len, head_size)
k (torch.Tensor):
The key tensor, shape: (bs, num_query_heads, seq_len, head_size)
v (torch.Tensor):
The value tensor, shape: (bs, num_query_heads, seq_len, head_size)
return_attention_probs (bool, optional):
Return the attention probabilities. Defaults to False.
Returns:
Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
Return the output of the attention aggregation. If `return_attention_probs` is True, then
also return the attention probabilities
.. note::
Right now, am assuming the expansion for the query key values is already done
outside. But ideally, since Flash attention handles the GQA correctly, we can
avoid doing that.
"""
attention_dropout_prob = self.attention_dropout_rate if self.training else 0.0
# Get into the correct shape for the Flash Attention API
# shape: (bs, seq_len, nqp, hn)
q = q.transpose(1, 2).contiguous()
query_length = q.size(1)
# shape: (bs, seq_len, npq, hn)
k = k.transpose(1, 2).contiguous()
# shape: (bs, seq_len, npq, hn)
v = v.transpose(1, 2).contiguous()
if attention_mask is not None:
causal = q.size(2) == k.size(2)
batch_size = q.shape[0]
flat_q, flat_k, flat_v, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
q, k, v, attention_mask, query_length
)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_q, max_seqlen_k = max_seq_lens
flat_kv = torch.cat((flat_k.unsqueeze(1), flat_v.unsqueeze(1)), dim=1)
attn_output_unpad = flash_attn_varlen_kvpacked_func(
q=flat_q,
kv=flat_kv,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_q,
max_seqlen_k=max_seqlen_k,
dropout_p=attention_dropout_prob,
softmax_scale=self.softmax_scale,
causal=causal,
return_attn_probs=return_attention_probs
)
attention_output = pad_input(
attn_output_unpad, indices_q, batch_size, query_length
)
else:
kv = torch.cat((k.unsqueeze(2), v.unsqueeze(2)), dim=2)
cu_seqlens_q = torch.arange(
0, (q.size(0) + 1), device=q.device, dtype=torch.int32
) * q.size(1)
cu_seqlens_kv = torch.arange(
0, (kv.size(0) + 1), device=kv.device, dtype=torch.int32
) * kv.size(1)
max_seqlen_q = q.size(1)
max_seqlen_k = kv.size(1)
attention_output = flash_attn_varlen_kvpacked_func(
q=collapse_first_n_dims(q, 2),
kv=collapse_first_n_dims(kv, 2),
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_kv,
max_seqlen_q=max_seqlen_q,
max_seqlen_k=max_seqlen_k,
dropout_p=attention_dropout_prob,
softmax_scale=self.softmax_scale,
causal=q.size(1) == kv.size(1),
return_attn_probs=return_attention_probs
)
if return_attention_probs:
(context_layer, attn_probs) = attention_output
context_layer = context_layer.view(q.size(0), q.size(1), -1, q.size(3)).transpose(1, 2).contiguous()
return (context_layer, attn_probs)
context_layer = attention_output
context_layer = context_layer.view(q.size(0), q.size(1), -1, q.size(3)).transpose(1, 2).contiguous()
return context_layer
def expand_kv_to_q_size(self, kv: torch.Tensor, num_q_per_kv: int) -> torch.Tensor:
"""
Expand the key-value tensor to match the size of the query tensor.
Args:
kv (torch.Tensor): The key-value tensor of shape (bsz, nkp, 2, seq_len, hdim).
num_q_per_kv (int): The number of queries per key-value.
Returns:
torch.Tensor: The expanded key-value tensor of shape (bsz, nqp, 2, seq_len, hdim).
Where nqp = num_q_per_kv * nkp
.. note(bapatra)::
Right now, I am using a repeat_interleave to expand the kv to the size of q.
This incurs a memory penalty, since the tensors are actually copied.
TODO: If this does yield benefits, then potentially we can use the re-written
flash attention kernel that can handle GQA.
"""
repeats = torch.tensor([num_q_per_kv] * kv.size(1)).to(kv.device)
total = repeats.sum()
expanded_kv = torch.repeat_interleave(
kv,
repeats=repeats,
dim=1,
output_size=total
)
return expanded_kv
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""
The forward function of the Self Attention Layer.
Args:
hidden_states (torch.Tensor):
The input tensor of shape (bs, q_len, h).
attention_mask (Optional[torch.Tensor], optional):
The attention mask tensor of shape (bs, seq_len). This is the 2D attention mask tensor as is standard in the flash-attention
kernel.
Defaults to None.
position_ids (Optional[torch.LongTensor], optional):
The position ids tensor of shape (bs, q_len). Defaults to None. Unused by the function.
past_key_value (Optional[Cache], optional):
The previous kv cache values. Defaults to None.
output_attentions (bool, optional):
Whether to return the attention scores. Defaults to False.
.. note::
For the blocksparse attention kernel, we do not support returning the attention scores.
use_cache (bool, optional):
Whether to use the cache for storing the kv. Defaults to False.
Returns:
Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
The output tensor of shape (bs, q_len, h),
the attention scores tensor of shape (bs, nqp, q_len, seq_len) if `output_attentions` is True,
and the updated cache values if `use_cache` is True.
Notations:
------------
bs: batch size
sq_len: sequence length of the entire sequence
q_len: sequence length of the query
cache_sq: sequence length in the cache
If there is no cache then cache_sq = 0
and sq_len = q_len
otherwise sq_len = q_len + cache_sq
h: hidden size
nq: number of query heads
nkv: number of key heads
hn: hidden size per head
hn = h // nq
nqp: number of query heads (per MP partition)
nqp = nq // (num mp partitions)
nkvp: number of key-value heads (per MP partition)
nkvp = nk // (num mp partitions)
"""
# shape: (bs, q_len, h)
bsz, q_len, _ = hidden_states.size()
# shape: (bs, q_len, (nqp + 2 * nkvp) * hn)
mixed_x_layer = self.query_key_value(hidden_states)
# shape: (bs, q_len, nqp, hn), shape: (bs, q_len, nkvp, hn), shape: (bs, q_len, nkvp, hn)
q, k, v = self._split_heads(mixed_x_layer)
# shape: (bs, qnp, q_len, hn)
query_states = q.permute(0, 2, 1, 3).contiguous()
# shape: (bs, nkvp, q_len, hn)
key_states = k.permute(0, 2, 1, 3).contiguous()
# shape: (bs, nkvp, q_len, hn)
value_states = v.permute(0, 2, 1, 3).contiguous()
kv_seq_len = key_states.shape[-2]
if past_key_values is not None:
if self.layer_idx is None:
raise ValueError(
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
if self.rotary_emb is not None:
seqlen_offset = past_key_values.get_usable_length(kv_seq_len, layer_idx=self.layer_idx)
# shape: (bs, nqp, q_len, hn), shape: (bs, nkvp, q_len, hn)
query_states, key_states = self.rotary_emb(
query_states, key_states, seq_dimension=2, seqlen_offset=seqlen_offset
)
key_states, value_states = past_key_values.update(key_states=key_states, value_states=value_states, layer_idx=self.layer_idx)
else:
# In this case seq_len = q_len and cache_sq = 0
if self.rotary_emb is not None:
# shape: (bs, nqp, seq_len, hn), shape: (bs, nkvp, seq_len, hn)
query_states, key_states = self.rotary_emb(query_states, key_states, seq_dimension=2)
# shape: (bs, nkvp, 2, seq_len, hn)
kv_states = torch.cat((key_states.unsqueeze(2), value_states.unsqueeze(2)), dim=2)
# shape: (bs, nqp, 2, seq_len, hn)
expanded_kv_states = self.expand_kv_to_q_size(kv_states, num_q_per_kv=self.num_q_per_kv)
# shape: (bs, nqp, seq_len, hn), shape: (bs, nqp, seq_len, hn)
expanded_key_states, expanded_value_states = expanded_kv_states[:, :, 0], expanded_kv_states[:, :, 1]
if self.blocksparse:
attn_function_output = self._apply_blocksparse_attention(
q=query_states,
k=expanded_key_states,
v=expanded_value_states,
attention_mask=attention_mask,
return_attention_probs=output_attentions
)
else:
attn_function_output = self._apply_dense_attention(
q=query_states,
k=expanded_key_states,
v=expanded_value_states,
attention_mask=attention_mask,
return_attention_probs=output_attentions
)
attn_weights = None
if output_attentions:
attn_output, attn_weights = attn_function_output
else:
# shape: (bs, nqp, seq_len, hn)
attn_output = attn_function_output
# shape: (bs, seq_len, nqp, hn)
attn_output = attn_output.transpose(1, 2).contiguous()
# shape: (bs, seq_len, h)
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.dense(attn_output)
return attn_output, attn_weights, past_key_values
class Phi3SmallDecoderLayer(nn.Module):
def __init__(self, config: Phi3SmallConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = Phi3SmallSelfAttention(config, layer_idx)
self.mlp = Phi3SmallMLP(config)
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
output_attentions: Optional[bool] = None,
use_cache: Optional[bool] = None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Cache]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_values = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_values,)
return outputs
class Phi3SmallPreTrainedModel(PreTrainedModel):
config_class = Phi3SmallConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["Phi3SmallDecoderLayer"]
skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_sdpa = False
_supports_cache_class = True
def _init_weights(self, module: nn.Module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
# The output projection on the decoder attention layer as well as the down_proj in the MLP are scaled
# differently (dubbed `output_layer_init_method` in the Megatron code). This is replicated here
for name, p in module.named_parameters():
if any(x in name for x in ("c_proj.weight", "down_proj.weight", "o_proj.weight")):
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
p.data.normal_(mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.num_hidden_layers)))
class Phi3SmallModel(Phi3SmallPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
# Embedding Dropout
self.embedding_dropout = nn.Dropout(config.embedding_dropout_prob)
# MuP Embedding scaling
self.mup_embedding_multiplier = config.mup_embedding_multiplier
self.layers = nn.ModuleList([Phi3SmallDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
self.final_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@property
def pad_sequence_to_multiple_of_64(self):
# We only need to do this for the backward pass. So only required
# when we are in the context of generating gradients
return self.config.pad_sequence_to_multiple_of_64 and torch.is_grad_enabled()
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, LegacyCache]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
past_key_values_length = 0
if use_cache:
use_legacy_cache = not isinstance(past_key_values, Cache)
if use_legacy_cache:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_key_values_length = past_key_values.get_usable_length(seq_length)
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, past_key_values_length + seq_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if attention_mask is not None:
if batch_size <= 0:
raise ValueError("batch_size has to be defined and > 0")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
inputs_embeds = self.embedding_dropout(inputs_embeds)
if self.mup_embedding_multiplier is not None and self.mup_embedding_multiplier > 0.0:
inputs_embeds = inputs_embeds * self.mup_embedding_multiplier
residual = 0
if self.pad_sequence_to_multiple_of_64:
# note(bapatra): Since we don't particularly use the position_ids and the attention mask
# we don't need to pad them
inputs_embeds, residual = pad_tensor_to_next_mult_of(tensor=inputs_embeds, dim=1, n=64)
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
# Following the Mistral schema for layer return values
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.final_layernorm(hidden_states)
if residual > 0:
hidden_states = strip_padding_from_tensor(tensor=hidden_states, dim=1, residual=residual)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class Phi3SmallForCausalLM(Phi3SmallPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = Phi3SmallModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, self.vocab_size, bias=False)
self.mup_width_multiplier = config.mup_width_multiplier
# Create the mask for the dummy tokens in the vocabulary
dummy_token_indices = config.dummy_token_indices
dummy_tokens_mask = torch.zeros(self.vocab_size).bool()
dummy_tokens_mask[dummy_token_indices] = True
# shape: (vocab_size,)
self.register_buffer("dummy_tokens_mask", dummy_tokens_mask, persistent=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, value):
self.lm_head = value
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
logits = logits.float()
if self.mup_width_multiplier:
logits = logits / self.mup_width_multiplier
logits = logits.masked_fill(self.dummy_tokens_mask, min_value_of_dtype(logits.dtype))
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor,
past_key_values: Optional[List[torch.FloatTensor]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
**kwargs
) -> Dict[str, Any]:
# only last token for inputs_ids if past is defined in kwargs
if past_key_values:
input_ids = input_ids[:, -1].unsqueeze(-1)
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -1].unsqueeze(-1)
else:
position_ids = None
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"position_ids": position_ids,
"attention_mask": attention_mask,
}
)
return model_inputs
# Copied from transformers.models.mistral.modeling_mistral.MistralForSequenceClassification with Mistral -> Phi3Small
class Phi3SmallForSequenceClassification(Phi3SmallPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = Phi3SmallModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
sequence_lengths = sequence_lengths % input_ids.shape[-1]
sequence_lengths = sequence_lengths.to(logits.device)
else:
sequence_lengths = -1
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = nn.MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = nn.BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
|