kvaishnavi's picture
Update onnx/builder.py
519b30f verified
import argparse
import onnx
import os
import requests
import shutil
import subprocess
import sys
import torch
from onnxruntime_genai.models.builder import create_model
from PIL import Image
from transformers import AutoConfig, AutoProcessor, AutoModelForCausalLM
def build_vision(args):
# Single image:
prompt = f"{user_prompt}<|image_1|>\nWhat is shown in this image?{prompt_suffix}{assistant_prompt}"
url = "https://www.ilankelman.org/stopsigns/australia.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(prompt, image, return_tensors="pt").to(args.execution_provider.replace("dml", "cuda"))
inputs["pixel_values"] = inputs["pixel_values"].to(args.precision)
# TorchScript export
dummy_inputs = (
inputs["pixel_values"], # input_embeds: Optional[torch.FloatTensor] = None,
inputs["image_sizes"], # image_sizes: Optional[torch.FloatTensor] = None,
)
dynamic_axes = {
"pixel_values": {0: "num_images", 1: "max_num_crops", 3: "height", 4: "width"},
"image_sizes": {0: "num_images"},
"visual_features": {0: "batch_size", 1: "num_img_tokens"},
}
filename = "phi-3-v-128k-instruct-vision.onnx"
temp_folder_1 = os.path.join(args.output, "vision_init_export")
os.makedirs(temp_folder_1, exist_ok=True)
fpath_1 = os.path.join(temp_folder_1, filename)
torch.onnx.export(
model.model.vision_embed_tokens,
args=dummy_inputs,
f=fpath_1,
export_params=True,
input_names=["pixel_values", "image_sizes"],
output_names=["visual_features"],
dynamic_axes=dynamic_axes,
opset_version=14,
do_constant_folding=True,
)
onnx.checker.check_model(fpath_1)
onnx.shape_inference.infer_shapes_path(fpath_1)
onnx_model = onnx.load_model(fpath_1, load_external_data=True)
temp_folder_2 = os.path.join(args.output, "vision_after_export")
os.makedirs(temp_folder_2, exist_ok=True)
fpath_2 = os.path.join(temp_folder_2, filename)
onnx.save_model(
onnx_model,
fpath_2,
save_as_external_data=True,
all_tensors_to_one_file=True,
location=f"{filename}.data",
size_threshold=0,
convert_attribute=False,
)
shutil.rmtree(temp_folder_1)
# ORT transformer optimizer
temp_folder_3 = os.path.join(args.output, "vision_after_opt")
fpath_3 = os.path.join(temp_folder_3, filename)
subprocess.run(
[
f"{sys.executable}", "-m", "onnxruntime.transformers.optimizer",
"--input", fpath_2,
"--output", fpath_3,
"--model_type", "clip",
"--num_heads", str(16),
"--hidden_size", str(1024),
"--use_external_data_format",
"--opt_level", str(0),
]
)
shutil.rmtree(temp_folder_2)
# ORT 4-bits quantizer
fpath_4 = os.path.join(args.output, filename)
cmd = [
f"{sys.executable}", "-m", "onnxruntime.quantization.matmul_4bits_quantizer",
"--input_model", fpath_3,
"--output_model", fpath_4,
"--block_size", str(32),
]
if args.precision == torch.float32: cmd.extend(["--accuracy_level", str(4)])
subprocess.run(cmd)
shutil.rmtree(temp_folder_3)
def build_text_embedding(args):
#########################################
# Functions/variables from model builder
#########################################
from onnx import helper, numpy_helper, TensorProto, external_data_helper, save_model
import numpy as np
# User inputs
io_dtype = TensorProto.FLOAT16 if args.precision == torch.float16 else TensorProto.FLOAT
os.makedirs(args.cache_dir, exist_ok=True)
# Map TensorProto dtypes
to_torch_dtype = {
TensorProto.FLOAT16: torch.float16,
TensorProto.FLOAT: torch.float32,
}
to_numpy_dtype = {
TensorProto.FLOAT16: np.float16,
TensorProto.FLOAT: np.float32,
}
def make_external_tensor(np_data, name, **kwargs):
tensor = numpy_helper.from_array(np_data)
tensor.name = name
filename = f"{name}.bin"
external_data_helper.set_external_data(tensor, location=filename)
with open(os.path.join(args.cache_dir, filename), "wb") as f:
f.write(tensor.raw_data)
tensor.ClearField("raw_data")
tensor.data_location = TensorProto.EXTERNAL
return tensor
# Make model
global model
embedding = model.model.embed_tokens.weight.to(to_torch_dtype[io_dtype]).detach().cpu().numpy()
weight_name = "model.embed_tokens.weight"
embed_weight = make_external_tensor(embedding.astype(to_numpy_dtype[io_dtype]), weight_name)
model = helper.make_model(
opset_imports=[helper.make_operatorsetid('', 14), helper.make_operatorsetid('com.microsoft', 1)],
ir_version=7,
producer_name="onnxruntime-genai",
producer_version="0.0.0",
graph=helper.make_graph(
name="main_graph",
inputs=[helper.make_tensor_value_info("input_ids", TensorProto.INT64, shape=["batch_size", "sequence_length"])],
outputs=[helper.make_tensor_value_info("inputs_embeds", io_dtype, shape=["batch_size", "sequence_length", config.hidden_size])],
initializer=[embed_weight],
value_info=[],
nodes=[helper.make_node('Gather', inputs=[weight_name, 'input_ids'], outputs=['inputs_embeds'], name="/model/embed_tokens/Gather")],
)
)
external_data_helper.load_external_data_for_model(model, args.cache_dir)
# Delete external data files on disk before re-saving
for path in os.listdir(args.cache_dir):
if path.endswith(".bin"):
os.remove(os.path.join(args.cache_dir, path))
# Delete temporary cache dir if empty
if len(os.listdir(args.cache_dir)) == 0:
os.rmdir(args.cache_dir)
# Save ONNX model with only one external data file and delete any existing duplicate copies
filename = "phi-3-v-128k-instruct-text-embedding.onnx"
output_path = os.path.join(args.output, filename)
save_model(
model,
output_path,
save_as_external_data=True,
all_tensors_to_one_file=True,
location=f"{filename}.data",
size_threshold=0,
convert_attribute=False,
)
def build_text(args):
# Create ONNX model
model_name = None
precision = "int4"
extra_options = {
"exclude_embeds": "true",
"filename": "phi-3-v-128k-instruct-text.onnx",
}
if args.precision == torch.float32: extra_options["int4_accuracy_level"] = 4
create_model(model_name, args.input, args.output, precision, args.execution_provider, args.cache_dir, **extra_options)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"-i",
"--input",
required=True,
help="Path to folder on disk containing the Hugging Face config, model, tokenizer, etc.",
)
parser.add_argument(
"-o",
"--output",
required=True,
help="Path to folder to store ONNX model and additional files (e.g. GenAI config, external data files, etc.)",
)
parser.add_argument(
"-p",
"--precision",
required=True,
choices=["fp16", "fp32"],
help="Precision to export PyTorch components with",
)
parser.add_argument(
"-e",
"--execution_provider",
required=True,
choices=["cpu", "cuda", "dml"],
help="Execution provider for Phi-3 vision components",
)
parser.add_argument(
"-c",
"--cache_dir",
required=False,
default=os.path.join('.', 'cache_dir'),
help="Cache directory for Hugging Face files and temporary ONNX external data files",
)
args = parser.parse_args()
args.precision = torch.float16 if args.precision == "fp16" else torch.float32
return args
if __name__ == "__main__":
user_prompt = '<|user|>\n'
assistant_prompt = '<|assistant|>\n'
prompt_suffix = "<|end|>\n"
args = get_args()
config = AutoConfig.from_pretrained(args.input, trust_remote_code=True)
processor = AutoProcessor.from_pretrained(args.input, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(args.input, trust_remote_code=True, torch_dtype=args.precision).to(args.execution_provider.replace("dml", "cuda"))
# Build model components
build_vision(args)
build_text_embedding(args)
build_text(args)