# coding=utf-8 # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Phi-3-V model.""" import inspect import math import warnings from typing import List, Optional, Tuple, Union import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from transformers.activations import ACT2FN from transformers.cache_utils import Cache, DynamicCache from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask from transformers.modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast, TokenClassifierOutput, ) from transformers.modeling_utils import PreTrainedModel from transformers.utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, is_flash_attn_greater_or_equal_2_10, logging, replace_return_docstrings, ) from .configuration_phi3_v import Phi3VConfig from .image_embedding_phi3_v import Phi3ImageEmbedding, Phi3Embedding try: from flash_attn import flash_attn_func, flash_attn_varlen_func from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) except ImportError: pass logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "microsoft/Phi-3-vision-128k-instruct" _CONFIG_FOR_DOC = "Phi3VConfig" PHI3V_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/Phi-3-vision-128k-instruct", # See all Phi-3 models at https://huggingface.co/models?filter=Phi-3 ] # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Phi3 class Phi3RMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ Phi3RMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) # Copied from transformers.models.llama.modeling_llama._get_unpad_data def _get_unpad_data(attention_mask): seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) return ( indices, cu_seqlens, max_seqlen_in_batch, ) # Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding with gemma->phi3, Gemma->Phi3 class Phi3RotaryEmbedding(nn.Module): def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): super().__init__() self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base self.register_buffer("inv_freq", None, persistent=False) @torch.no_grad() def forward(self, x, position_ids, seq_len=None): # x: [bs, num_attention_heads, seq_len, head_size] if self.inv_freq is None: self.inv_freq = 1.0 / ( self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim) ) inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) position_ids_expanded = position_ids[:, None, :].float() # Force float32 since bfloat16 loses precision on long contexts # See https://github.com/huggingface/transformers/pull/29285 device_type = x.device.type device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() sin = emb.sin() return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) class Phi3SuScaledRotaryEmbedding(Phi3RotaryEmbedding): def __init__(self, dim, config, device=None): super().__init__(dim, config.max_position_embeddings, config.rope_theta, device) self.short_factor = config.rope_scaling["short_factor"] self.long_factor = config.rope_scaling["long_factor"] self.original_max_position_embeddings = config.original_max_position_embeddings @torch.no_grad() def forward(self, x, position_ids, seq_len=None): seq_len = torch.max(position_ids) + 1 if seq_len > self.original_max_position_embeddings: ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device) else: ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device) inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape) inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) position_ids_expanded = position_ids[:, None, :].float() # Force float32 since bfloat16 loses precision on long contexts # See https://github.com/huggingface/transformers/pull/29285 device_type = x.device.type device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) scale = self.max_position_embeddings / self.original_max_position_embeddings if scale <= 1.0: scaling_factor = 1.0 else: scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings)) cos = emb.cos() * scaling_factor sin = emb.sin() * scaling_factor return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) class Phi3YarnScaledRotaryEmbedding(Phi3RotaryEmbedding): def __init__(self, dim, config, device=None): super().__init__(dim, config.max_position_embeddings, config.rope_theta, device) self.short_factor = config.rope_scaling["short_factor"] self.long_factor = config.rope_scaling["long_factor"] self.original_max_position_embeddings = config.original_max_position_embeddings @torch.no_grad() def forward(self, x, position_ids, seq_len=None): seq_len = torch.max(position_ids) + 1 if seq_len > self.original_max_position_embeddings: ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device) else: ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device) inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape) inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) position_ids_expanded = position_ids[:, None, :].float() # Force float32 since bfloat16 loses precision on long contexts # See https://github.com/huggingface/transformers/pull/29285 device_type = x.device.type device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) scale = self.max_position_embeddings / self.original_max_position_embeddings if scale <= 1.0: scaling_factor = 1.0 else: scaling_factor = 0.1 * math.log(scale) + 1.0 cos = emb.cos() * scaling_factor sin = emb.sin() * scaling_factor return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) # Copied from transformers.models.llama.modeling_llama.rotate_half def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class Phi3MLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False) self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) self.activation_fn = ACT2FN[config.hidden_act] def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: up_states = self.gate_up_proj(hidden_states) gate, up_states = up_states.chunk(2, dim=-1) up_states = up_states * self.activation_fn(gate) return self.down_proj(up_states) # Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) class Phi3Attention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: Phi3VConfig, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx if layer_idx is None: logger.warning_once( f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) self.attention_dropout = config.attention_dropout self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.max_position_embeddings = config.max_position_embeddings self.original_max_position_embeddings = config.original_max_position_embeddings self.rope_theta = config.rope_theta self.rope_scaling = config.rope_scaling self.is_causal = True if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) op_size = self.num_heads * self.head_dim + 2 * (self.num_key_value_heads * self.head_dim) self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) self.qkv_proj = nn.Linear(self.hidden_size, op_size, bias=False) self._init_rope() def _init_rope(self): if self.rope_scaling is None: self.rotary_emb = Phi3RotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, base=self.rope_theta, ) else: scaling_type = self.config.rope_scaling["type"] if scaling_type == "su": self.rotary_emb = Phi3SuScaledRotaryEmbedding(self.head_dim, self.config) elif scaling_type == "yarn": self.rotary_emb = Phi3YarnScaledRotaryEmbedding(self.head_dim, self.config) else: raise ValueError(f"Unknown RoPE scaling type {scaling_type}") def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: logger.warning_once("You are not running the flash-attention implementation, expect numerical differences.") bsz, q_len, _ = hidden_states.size() qkv = self.qkv_proj(hidden_states) query_pos = self.num_heads * self.head_dim query_states = qkv[..., :query_pos] key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim] value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :] query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: if self.layer_idx is None: raise ValueError( f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " "with a layer index." ) kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): raise ValueError( f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights + attention_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value class Phi3FlashAttention2(Phi3Attention): """ Phi-3 flash attention module. This module inherits from `Phi3Attention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: # Phi3FlashAttention2 attention does not support output_attentions if not _flash_supports_window_size: logger.warning_once( "The current flash attention version does not support sliding window attention. Please use `attn_implementation='eager'` or upgrade flash-attn library." ) raise ValueError("The current flash attention version does not support sliding window attention.") output_attentions = False if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) # overwrite attention_mask with padding_mask attention_mask = kwargs.pop("padding_mask") bsz, q_len, _ = hidden_states.size() qkv = self.qkv_proj(hidden_states) query_pos = self.num_heads * self.head_dim query_states = qkv[..., :query_pos] key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim] value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :] # Flash attention requires the input to have the shape # batch_size x seq_length x head_dim x hidden_dim # therefore we just need to keep the original shape query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: if self.layer_idx is None: raise ValueError( f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " "with a layer index." ) kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) # Because the input can be padded, the absolute sequence length depends on the max position id. rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1 cos, sin = self.rotary_emb(value_states, position_ids, seq_len=rotary_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) use_sliding_windows = ( _flash_supports_window_size and getattr(self.config, "sliding_window", None) is not None and kv_seq_len > self.config.sliding_window ) if past_key_value is not None: # Activate slicing cache only if the config has a value `sliding_windows` attribute cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0 if ( getattr(self.config, "sliding_window", None) is not None and kv_seq_len > self.config.sliding_window and cache_has_contents ): slicing_tokens = 1 - self.config.sliding_window past_key = past_key_value[self.layer_idx][0] past_value = past_key_value[self.layer_idx][1] past_key = past_key[:, :, slicing_tokens:, :].contiguous() past_value = past_value[:, :, slicing_tokens:, :].contiguous() if past_key.shape[-2] != self.config.sliding_window - 1: raise ValueError( f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got" f" {past_key.shape}" ) if attention_mask is not None: attention_mask = attention_mask[:, slicing_tokens:] attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_dropout = self.attention_dropout if self.training else 0.0 # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in the correct dtype just to be sure everything works as expected. # This might slowdown training & inference so it is recommended to not cast the LayerNorms # in fp32. if query_states.dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.qkv_proj.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) # Reashape to the expected shape for Flash Attention query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) attn_output = self._flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, dropout=attn_dropout, use_sliding_windows=use_sliding_windows, ) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._flash_attention_forward def _flash_attention_forward( self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None, use_sliding_windows=False, ): """ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token first unpad the input, then computes the attention scores and pad the final attention scores. Args: query_states (`torch.Tensor`): Input query states to be passed to Flash Attention API key_states (`torch.Tensor`): Input key states to be passed to Flash Attention API value_states (`torch.Tensor`): Input value states to be passed to Flash Attention API attention_mask (`torch.Tensor`): The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the position of padding tokens and 1 for the position of non-padding tokens. dropout (`float`): Attention dropout softmax_scale (`float`, *optional*): The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) use_sliding_windows (`bool`, *optional*): Whether to activate sliding window attention. """ if not self._flash_attn_uses_top_left_mask: causal = self.is_causal else: # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. causal = self.is_causal and query_length != 1 # Contains at least one padding token in the sequence if attention_mask is not None: batch_size = query_states.shape[0] query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( query_states, key_states, value_states, attention_mask, query_length ) cu_seqlens_q, cu_seqlens_k = cu_seq_lens max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens if not use_sliding_windows: attn_output_unpad = flash_attn_varlen_func( query_states, key_states, value_states, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_in_batch_q, max_seqlen_k=max_seqlen_in_batch_k, dropout_p=dropout, softmax_scale=softmax_scale, causal=causal, ) else: attn_output_unpad = flash_attn_varlen_func( query_states, key_states, value_states, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_in_batch_q, max_seqlen_k=max_seqlen_in_batch_k, dropout_p=dropout, softmax_scale=softmax_scale, causal=causal, window_size=(self.config.sliding_window, self.config.sliding_window), ) attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) else: if not use_sliding_windows: attn_output = flash_attn_func( query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal, ) else: attn_output = flash_attn_func( query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal, window_size=(self.config.sliding_window, self.config.sliding_window), ) return attn_output # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape # On the first iteration we need to properly re-create the padding mask # by slicing it on the proper place if kv_seq_len != attention_mask.shape[-1]: attention_mask_num_tokens = attention_mask.shape[-1] attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :] indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) if query_length == kv_seq_len: query_layer = index_first_axis( query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k ) cu_seqlens_q = cu_seqlens_k max_seqlen_in_batch_q = max_seqlen_in_batch_k indices_q = indices_k elif query_length == 1: max_seqlen_in_batch_q = 1 cu_seqlens_q = torch.arange( batch_size + 1, dtype=torch.int32, device=query_layer.device ) # There is a memcpy here, that is very bad. indices_q = cu_seqlens_q[:-1] query_layer = query_layer.squeeze(1) else: # The -q_len: slice assumes left padding. attention_mask = attention_mask[:, -query_length:] query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) return ( query_layer, key_layer, value_layer, indices_q, (cu_seqlens_q, cu_seqlens_k), (max_seqlen_in_batch_q, max_seqlen_in_batch_k), ) # copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Phi3 # TODO @Arthur no longer copied from LLama after static cache class Phi3SdpaAttention(Phi3Attention): """ Phi3 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from `Phi3Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to SDPA API. """ # Adapted from Phi3Attention.forward def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if output_attentions: # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. logger.warning_once( "Phi3Model is using Phi3SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) bsz, q_len, _ = hidden_states.size() qkv = self.qkv_proj(hidden_states) query_pos = self.num_heads * self.head_dim query_states = qkv[..., :query_pos] key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim] value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :] query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" ) # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, # Reference: https://github.com/pytorch/pytorch/issues/112577. if query_states.device.type == "cuda" and attention_mask is not None: query_states = query_states.contiguous() key_states = key_states.contiguous() value_states = value_states.contiguous() attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=attention_mask, dropout_p=self.attention_dropout if self.training else 0.0, # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. is_causal=self.is_causal and attention_mask is None and q_len > 1, ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.view(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) return attn_output, None, past_key_value PHI3_ATTENTION_CLASSES = { "eager": Phi3Attention, "flash_attention_2": Phi3FlashAttention2, "sdpa": Phi3SdpaAttention, } class Phi3DecoderLayer(nn.Module): def __init__(self, config: Phi3VConfig, layer_idx: int): super().__init__() self.config = config self.self_attn = PHI3_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx) self.mlp = Phi3MLP(config) self.input_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.resid_attn_dropout = nn.Dropout(config.resid_pdrop) self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop) self.post_attention_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention attn_outputs, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = residual + self.resid_attn_dropout(attn_outputs) residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + self.resid_mlp_dropout(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs PHI3V_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Phi3VConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare Phi-3-V model outputting raw hidden-states without any specific head on top.", PHI3V_START_DOCSTRING, ) class Phi3VPreTrainedModel(PreTrainedModel): config_class = Phi3VConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["Phi3DecoderLayer"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True _supports_sdpa = False _supports_cache_class = True _version = "0.0.5" def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() PHI3V_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Two formats are allowed: - a [`~cache_utils.Cache`] instance; - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy cache format. The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the legacy cache format will be returned. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)): The tensors corresponding to the input images. Pixel values can be obtained using [`AutoImageProcessor`]. See [`Phi3ImageProcessor.__call__`] for details. image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`, *optional*): The sizes of the images in the batch, being (height, width) for each image. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Phi-3-V model outputting raw hidden-states without any specific head on top.", PHI3V_START_DOCSTRING, ) class Phi3VModel(Phi3VPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`] Args: config: Phi3Config """ def __init__(self, config: Phi3VConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.embed_dropout = nn.Dropout(config.embd_pdrop) self.combined_embed = Phi3Embedding(self.embed_tokens, config.vocab_size) self.vision_embed_tokens = None if isinstance(config.embd_layer, dict): # vision embedding layer embedding_config = { 'embedding_cls': config.embd_layer['embedding_cls'], **config.embd_layer } self.vision_embed_tokens = Phi3ImageEmbedding(config, wte=self.embed_tokens, **embedding_config) # # set wte the same for vision embedding # self.vision_embed_tokens.wte.weight = self.embed_tokens.weight self.layers = nn.ModuleList( [Phi3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self._attn_implementation = config._attn_implementation self.norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(PHI3V_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, image_sizes: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = input_ids.shape[:2] elif inputs_embeds is not None: batch_size, seq_length = inputs_embeds.shape[:2] else: raise ValueError("You have to specify either input_ids or inputs_embeds") past_key_values_length = 0 if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False if use_cache: use_legacy_cache = not isinstance(past_key_values, Cache) if use_legacy_cache: past_key_values = DynamicCache.from_legacy_cache(past_key_values) past_key_values_length = past_key_values.get_usable_length(seq_length) if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device ) position_ids = position_ids.unsqueeze(0).view(-1, seq_length) else: position_ids = position_ids.view(-1, seq_length).long() if inputs_embeds is None: if pixel_values is not None and image_sizes is not None: assert self.vision_embed_tokens is not None, "Vision embedding layer is not defined" # inputs_embeds = self.vision_embed_tokens(input_ids, pixel_values=pixel_values, image_sizes=image_sizes) inputs_embeds = self.vision_embed_tokens(pixel_values=pixel_values, image_sizes=image_sizes) else: inputs_embeds = self.embed_tokens(input_ids) if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache: is_padding_right = attention_mask[:, -1].sum().item() != batch_size if is_padding_right: raise ValueError( "You are attempting to perform batched generation with padding_side='right'" " this may lead to unexpected behaviour for Flash Attention version of Phi3. Make sure to " " call `tokenizer.padding_side = 'left'` before tokenizing the input. " ) if self._attn_implementation == "flash_attention_2": # 2d mask is passed through the layers attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None else: # 4d mask is passed through the layers attention_mask = _prepare_4d_causal_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, sliding_window=self.config.sliding_window, ) hidden_states = inputs_embeds # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, position_ids, past_key_values, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache = layer_outputs[2 if output_attentions else 1] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = None if use_cache: next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) class Phi3VForCausalLM(Phi3VPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi3 def __init__(self, config): super().__init__(config) self.model = Phi3VModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings def get_input_embeddings(self): return self.model.embed_tokens # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings def set_input_embeddings(self, value): self.model.embed_tokens = value # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings def get_output_embeddings(self): return self.lm_head # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder def set_decoder(self, decoder): self.model = decoder # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder def get_decoder(self): return self.model # Ignore copy @add_start_docstrings_to_model_forward(PHI3V_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, image_sizes: Optional[torch.LongTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from transformers import AutoTokenizer, Phi3ForCausalLM >>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct") >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct") >>> prompt = "This is an example script ." >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] 'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum' ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, pixel_values=pixel_values, image_sizes=image_sizes, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) logits = logits.float() loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.persimmon.modeling_persimmon.PersimmonForCausalLM.prepare_inputs_for_generation def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, pixel_values=None, image_sizes=None, **kwargs ): if past_key_values is not None: if isinstance(past_key_values, Cache): cache_length = past_key_values.get_seq_length() past_length = past_key_values.seen_tokens max_cache_length = past_key_values.get_max_length() else: cache_length = past_length = past_key_values[0][0].shape[2] max_cache_length = None # Keep only the unprocessed tokens: # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as # input) if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard # input_ids based on the past_length. elif past_length < input_ids.shape[1]: input_ids = input_ids[:, past_length:] # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. if ( max_cache_length is not None and attention_mask is not None and cache_length + input_ids.shape[1] > max_cache_length ): attention_mask = attention_mask[:, -max_cache_length:] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, "pixel_values": pixel_values, "image_sizes": image_sizes, } ) return model_inputs @staticmethod # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM._reorder_cache def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past @add_start_docstrings( """ The [`Phi3VModel`] with a sequence classification head on top (linear layer). [`Phi3VForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, PHI3V_START_DOCSTRING, ) # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Phi3, LLAMA->PHI3, self.transformer->self.model, transformer_outputs->model_outputs class Phi3VForSequenceClassification(Phi3VPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = Phi3VModel(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(PHI3V_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, image_sizes: Optional[torch.LongTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict model_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, pixel_values=pixel_values, image_sizes=image_sizes, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = model_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + model_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=model_outputs.past_key_values, hidden_states=model_outputs.hidden_states, attentions=model_outputs.attentions, ) @add_start_docstrings( """ [`Phi3VModel`] with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, PHI3V_START_DOCSTRING, ) # Copied from transformers.models.mpt.modeling_mpt.MptForTokenClassification with Mpt->Phi3,MPT->PHI3,self.transformer->self.model,transformer_outputs->model_outputs class Phi3VForTokenClassification(Phi3VPreTrainedModel): def __init__(self, config: Phi3VConfig): super().__init__(config) self.num_labels = config.num_labels self.model = Phi3VModel(config) if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None: classifier_dropout = config.classifier_dropout elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None: classifier_dropout = config.hidden_dropout else: classifier_dropout = 0.1 self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(PHI3V_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, pixel_values: Optional[torch.FloatTensor] = None, image_sizes: Optional[torch.LongTensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **deprecated_arguments, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict model_outputs = self.model( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, inputs_embeds=inputs_embeds, pixel_values=pixel_values, image_sizes=image_sizes, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = model_outputs[0] hidden_states = self.dropout(hidden_states) logits = self.classifier(hidden_states) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) batch_size, seq_length = labels.shape loss_fct = CrossEntropyLoss() loss = loss_fct( logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length) ) if not return_dict: output = (logits,) + model_outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=model_outputs.hidden_states, attentions=model_outputs.attentions, )