# coding=utf-8 # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings import torch from torch import nn from transformers import CLIPVisionConfig, CLIPVisionModel, PretrainedConfig from transformers.models.clip.modeling_clip import CLIPAttention from transformers.utils import logging from typing import List try: from flash_attn import flash_attn_func except ImportError: pass logger = logging.get_logger(__name__) MAX_INPUT_ID = int(1e9) CLIP_VIT_LARGE_PATCH14_336_CONFIG = CLIPVisionConfig( attention_dropout=0.0, dropout=0.0, hidden_act="quick_gelu", hidden_size=1024, image_size=336, initializer_factor=1.0, initializer_range=0.02, intermediate_size=4096, layer_norm_eps=1e-05, num_attention_heads=16, num_channels=3, num_hidden_layers=24, patch_size=14, projection_dim=768, attn_implementation="eager", ) class CLIPAttentionFA2(CLIPAttention): """Add flash attention 2 to CLIPAttention. (This is only used in the vision encoder)""" def forward(self, hidden_states, attention_mask=None, causal_attention_mask=None, output_attentions=False, ): """Input shape: Batch x Time x Channel""" assert attention_mask is None, "CLIPAttentionFA2 does not support attention_mask" assert causal_attention_mask is None, "CLIPAttentionFA2 does not support causal_attention_mask" assert output_attentions is False, "CLIPAttentionFA2 does not support output_attentions" bsz, tgt_len, embed_dim = hidden_states.size() query_states = self.q_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim) key_states = self.k_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim) value_states = self.v_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim) attn_output = flash_attn_func( query_states, key_states, value_states, dropout_p=self.dropout if self.training else 0.0, softmax_scale=self.scale, causal=False, ).reshape(bsz, tgt_len, embed_dim) attn_output = self.out_proj(attn_output) return attn_output, None def reshape_hd_patches_2x2merge(image_features, h_crop, w_crop): """ image_features: (num_images*num_crops, 24*24, 1024) output: (num_images, h_crop*12, w_crop*12, 4096), h_crop*w_crop == num_crops """ N, L, C = image_features.shape assert L == 24 * 24 and C == 1024 and N % (h_crop * w_crop) == 0 num_images = torch.tensor(N // (h_crop * w_crop), dtype=torch.int64) H = torch.tensor(int(L**0.5), dtype=torch.int64) H_div_2 = torch.tensor(H // 2, dtype=torch.int64) image_features_hd = ( image_features.reshape(N, H, H, C) # N, 24, 24, 1024 .reshape(N, H_div_2, 2, H_div_2, 2, C) # N, 12, 2, 12, 2, 1024 .permute(0, 1, 3, 2, 4, 5) # N, 12, 12, 2, 2, 1024 .reshape(N, -1, 4 * C) # N, 144, 4096 .reshape( num_images, h_crop, w_crop, H_div_2, H_div_2, -1 ) # n_img, h_crop, w_crop, 12, 12, 4096 .permute(0, 1, 3, 2, 4, 5) # n_img, h_crop, 12, w_crop, 12, 4096 .reshape( num_images, h_crop * H_div_2, w_crop * H_div_2, 4 * C ) # n_img, h_crop*12, w_crop*12, 4096 ) return image_features_hd def add_image_newline(image_features_hd, sub_GN): """ image_features_hd: (num_images, h_crop*12, w_crop*12, 4096) output: (num_images, (h_crop*12) * (w_crop*12+1), 4096) """ num_images, h, w, hid_dim = image_features_hd.shape # add the newline token to the HD image feature patches newline_embeddings = sub_GN.expand(num_images, h, -1, -1) # (n_img, h, 1, hid_dim) image_features_hd_newline = torch.cat( [image_features_hd, newline_embeddings], dim=2 ).reshape(num_images, -1, hid_dim) return image_features_hd_newline @torch.jit.script_if_tracing def get_image_embeddings(image_dim_out, image_sizes, image_features, global_image_features_hd_newline): """ Get image embeddings for all images. Need a for loop to process each image because of different image sizes (patch arrangement is different for each image) """ glb_GN = torch.zeros(1, 1, image_dim_out * 4).to(image_features.device) sub_GN = torch.zeros(1, 1, 1, image_dim_out * 4).to(image_features.device) all_image_embeddings = torch.empty(0, 4096).to(image_features.device) for i, img_size in enumerate(image_sizes): # h, w = img_size h, w = img_size[0], img_size[1] h_crop = torch.tensor(h // 336, dtype=torch.int64) w_crop = torch.tensor(w // 336, dtype=torch.int64) num_crops = h_crop * w_crop # NOTE: real num_crops is padded # (num_crops, 24*24, 1024) sub_image_features = image_features[i, 1 : 1 + num_crops] sub_image_features_hd = reshape_hd_patches_2x2merge(sub_image_features, h_crop, w_crop) sub_image_features_hd_newline = add_image_newline(sub_image_features_hd, sub_GN) # # [sub features, separator, global features] # all_image_embeddings.extend( # [ # sub_image_features_hd_newline.squeeze(0), # (h_crop*12*(w_crop*12+1), 4096) # self.glb_GN.squeeze(0), # global_image_features_hd_newline[i], # ] # ) # [sub features, separator, global features] all_image_embeddings = torch.cat( [ all_image_embeddings, sub_image_features_hd_newline.view(-1, 4096), # (h_crop*12*(w_crop*12+1), 4096) glb_GN.view(-1, 4096), global_image_features_hd_newline[i], ] ) return all_image_embeddings @torch.jit.script_if_tracing def clamp_input_ids(input_ids: torch.LongTensor, image_features: torch.FloatTensor, vocab_size: int): if image_features.numel(): input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) # positions for image tokens condition = (input_ids < 0) & (input_ids > -int(1e9)) positions = torch.where(condition) # has_image = len(positions[0].tolist()) > 0 input_ids = input_ids.clamp_min(0).clamp_max(vocab_size).detach() return input_ids, positions return input_ids, torch.where(torch.zeros((1, 1), dtype=torch.bool)) @torch.jit.script_if_tracing def select_logic(hidden_states: torch.FloatTensor, image_features: torch.FloatTensor, positions: List[torch.LongTensor]): if image_features.numel(): # apply 'select' logic hidden_states = hidden_states.index_put( positions, image_features, accumulate=False ) return hidden_states class Phi3Embedding(nn.Module): """Phi3 embedding for text-only and vision + text.""" def __init__(self, wte, vocab_size): super().__init__() self.wte = wte self.vocab_size = vocab_size def forward(self, input_ids: torch.LongTensor, image_features: torch.FloatTensor) -> torch.FloatTensor: input_ids, positions = clamp_input_ids(input_ids, image_features, self.vocab_size) hidden_states = self.wte(input_ids) hidden_states = select_logic(hidden_states, image_features, positions) return hidden_states class Phi3ImageEmbedding(nn.Module): """Phi3 Image embedding.""" def __init__(self, config: PretrainedConfig, wte=None, **kwargs) -> None: super().__init__() # n_embed or hidden_size hidden_size = config.n_embd if hasattr(config, 'n_embd') else config.hidden_size if hasattr(config, 'embd_pdrop') or hasattr(config, 'embed_pdrop'): embd_drop = config.embd_pdrop if hasattr(config, 'embd_pdrop') else config.embed_pdrop self.drop = nn.Dropout(embd_drop) else: self.drop = None self.wte = wte if isinstance(config.img_processor, dict) and config.img_processor.get('name', None) == 'clip_vision_model': assert 'model_name' in config.img_processor, 'model_name must be provided for CLIPVisionModel' assert 'image_dim_out' in config.img_processor, 'image_dim_out must be provided for CLIPVisionModel' assert 'num_img_tokens' in config.img_processor, 'num_img_tokens must be provided for CLIPVisionModel' assert config.img_processor['model_name'] == 'openai/clip-vit-large-patch14-336' clip_config = CLIP_VIT_LARGE_PATCH14_336_CONFIG self.img_processor = CLIPVisionModel(clip_config) image_dim_out = config.img_processor['image_dim_out'] self.num_img_tokens = config.img_processor['num_img_tokens'] # FA2 in CLIP if config._attn_implementation == 'flash_attention_2': for layer in self.img_processor.vision_model.encoder.layers: clip_fa2 = CLIPAttentionFA2(clip_config) del layer.self_attn layer.self_attn = clip_fa2 else: raise NotImplementedError(f'img_processor = {config.img_processor}, not implemented') self.image_dim_out = image_dim_out self.img_sizes = None # global_gn and sub_gn for hd transform, serves as line separator self.use_hd_transform = kwargs.get('use_hd_transform', False) self.with_learnable_separator = kwargs.get('with_learnable_separator', False) self.hd_transform_order = kwargs.get('hd_transform_order', 'glb_sub') # with_hd_transform and with_learnable_separator should have same value assert self.use_hd_transform == self.with_learnable_separator, 'use_hd_transform and with_learnable_separator should have same value' if self.with_learnable_separator: assert self.use_hd_transform, 'learnable separator is only for hd transform' # 1024 * 4, merge spatial to channel dimension self.glb_GN = nn.Parameter(torch.zeros([1, 1, self.image_dim_out * 4])) self.sub_GN = nn.Parameter(torch.zeros([1, 1, 1, self.image_dim_out * 4])) logger.info(f'learnable separator enabled for hd transform, hd_transform_order = {self.hd_transform_order}') projection_cls = kwargs.get('projection_cls', 'linear') if projection_cls == 'linear': self.img_projection = nn.Linear(image_dim_out, hidden_size) elif projection_cls == 'mlp' and self.use_hd_transform: dim_projection = hidden_size depth = 2 layers = [nn.Linear(image_dim_out * 4, dim_projection)] for _ in range(1, depth): layers.extend([nn.GELU(), nn.Linear(dim_projection, dim_projection)]) self.img_projection = nn.Sequential(*layers) elif projection_cls == 'mlp': dim_projection = hidden_size depth = 2 layers = [nn.Linear(image_dim_out, dim_projection)] for _ in range(1, depth): layers.extend([nn.GELU(), nn.Linear(dim_projection, dim_projection)]) self.img_projection = nn.Sequential(*layers) else: raise NotImplementedError(f'projection_cls = {projection_cls}, not implemented') self.vocab_size = config.vocab_size self.img_features = None if isinstance(config.img_processor, dict): self.layer_idx = config.img_processor.get('layer_idx', -2) self.type_feature = config.img_processor.get('type_feature', 'patch') else: self.layer_idx = -2 self.type_feature = 'patch' def set_img_features(self, img_features: torch.FloatTensor) -> None: self.img_features = img_features def set_img_sizes(self, img_sizes: torch.LongTensor) -> None: self.img_sizes = img_sizes def get_img_features(self, img_embeds: torch.FloatTensor) -> torch.FloatTensor: LAYER_IDX = self.layer_idx TYPE_FEATURE = self.type_feature img_processor_output = self.img_processor(img_embeds, output_hidden_states=True) img_feature = img_processor_output.hidden_states[LAYER_IDX] if TYPE_FEATURE == "patch": patch_feature = img_feature[:, 1:] return patch_feature raise NotImplementedError # def forward( # self, input_ids: torch.LongTensor, pixel_values: torch.FloatTensor, image_sizes=None # ) -> torch.FloatTensor: # input_shape = input_ids.size() # input_ids = input_ids.view(-1, input_shape[-1]) # # positions for image tokens # positions = torch.nonzero((input_ids < 0) & (input_ids > -MAX_INPUT_ID), as_tuple=True) # has_image = len(positions[0].tolist()) > 0 # # input_ids = input_ids.clamp_min(0).clamp_max(self.vocab_size).detach() # input_ids.clamp_min_(0).clamp_max_(self.vocab_size) # warnings.warn( # "Phi-3-V modifies `input_ids` in-place and the tokens indicating images will be " # "removed after model forward. If your workflow requires multiple forward passes on " # "the same `input_ids`, please make a copy of `input_ids` before passing it to the " # "model." # ) # hidden_states = self.wte(input_ids) # if has_image: # assert self.use_hd_transform # num_images, num_crops, c, h, w = pixel_values.shape # assert c == 3 and h == w == 336 # img_features = self.get_img_features(pixel_values.flatten(0, 1)).reshape( # num_images, num_crops, -1, self.image_dim_out # ) # image_features_proj = self.hd_feature_transform(img_features, image_sizes) # hidden_states = hidden_states.index_put( # positions, image_features_proj, accumulate=False # ) # if self.drop is not None: # hidden_states = self.drop(hidden_states) # return hidden_states def forward(self, pixel_values: torch.FloatTensor, image_sizes=None) -> torch.FloatTensor: assert self.use_hd_transform num_images, num_crops, c, h, w = pixel_values.shape assert c == 3 and h == w == 336 img_features = self.get_img_features(pixel_values.flatten(0, 1)).reshape( num_images, num_crops, -1, self.image_dim_out ) image_features_proj = self.hd_feature_transform(img_features, image_sizes) return image_features_proj def hd_feature_transform(self, image_features, image_sizes): """ image_features: (num_images, num_crops+1, 24*24, 1024) """ assert ( self.hd_transform_order == 'sub_glb' ), f'hd_transform_order `{self.hd_transform_order}` not implemented' if isinstance(self.img_projection, nn.Sequential): target_device = self.img_projection[0].bias.device target_dtype = self.img_projection[0].bias.dtype else: # It's a single nn.Linear layer target_device = self.img_projection.bias.device target_dtype = self.img_projection.bias.dtype global_image_features = image_features[:, 0] # (num_images, 24*24, 1024) # global feature can be viewed as a special HD case with num_crops 1x1 global_image_features_hd = self.reshape_hd_patches_2x2merge(global_image_features, 1, 1) global_image_features_hd_newline = self.add_image_newline(global_image_features_hd) # all_image_embeddings = [] # # need a for loop to process each image because of different image sizes # # (patch arrangement is different for each image) # for i, img_size in enumerate(image_sizes): # h, w = img_size # h_crop = h // 336 # w_crop = w // 336 # num_crops = h_crop * w_crop # # NOTE: real num_crops is padded # # (num_crops, 24*24, 1024) # sub_image_features = image_features[i, 1 : 1 + num_crops] # sub_image_features_hd = self.reshape_hd_patches_2x2merge( # sub_image_features, h_crop, w_crop # ) # sub_image_features_hd_newline = self.add_image_newline(sub_image_features_hd) # # [sub features, separator, global features] # all_image_embeddings.extend( # [ # sub_image_features_hd_newline.squeeze(0), # (h_crop*12*(w_crop*12+1), 4096) # self.glb_GN.squeeze(0), # global_image_features_hd_newline[i], # ] # ) # image_features_proj = self.img_projection( # torch.cat(all_image_embeddings, dim=0).to(target_device).to(target_dtype) # ) # return image_features_proj all_image_embeddings = get_image_embeddings(torch.tensor(self.image_dim_out), image_sizes, image_features, global_image_features_hd_newline) image_features_proj = self.img_projection( all_image_embeddings.unsqueeze(0).to(target_device).to(target_dtype) ) return image_features_proj.squeeze() def reshape_hd_patches_2x2merge(self, image_features, h_crop, w_crop): """ image_features: (num_images*num_crops, 24*24, 1024) output: (num_images, h_crop*12, w_crop*12, 4096), h_crop*w_crop == num_crops """ N, L, C = image_features.shape assert L == 24 * 24 and C == 1024 and N % (h_crop * w_crop) == 0 num_images = N // (h_crop * w_crop) H = int(L**0.5) image_features_hd = ( image_features.reshape(N, H, H, C) # N, 24, 24, 1024 .reshape(N, H // 2, 2, H // 2, 2, C) # N, 12, 2, 12, 2, 1024 .permute(0, 1, 3, 2, 4, 5) # N, 12, 12, 2, 2, 1024 .reshape(N, -1, 4 * C) # N, 144, 4096 .reshape( num_images, h_crop, w_crop, H // 2, H // 2, -1 ) # n_img, h_crop, w_crop, 12, 12, 4096 .permute(0, 1, 3, 2, 4, 5) # n_img, h_crop, 12, w_crop, 12, 4096 .reshape( num_images, h_crop * H // 2, w_crop * H // 2, 4 * C ) # n_img, h_crop*12, w_crop*12, 4096 ) # alternative implementation using einops # from einops import rearrange # image_features_nhwc = rearrange( # image_features, # 'N (H W) c -> N H W c', # H=H, # W=H, # ) # image_features_2x2merge = rearrange( # image_features_nhwc, # 'N (h h_pool) (w w_pool) c -> N h w (h_pool w_pool c)', # h_pool=2, # w_pool=2, # ) # image_features_hd = rearrange( # image_features_2x2merge, # '(n_img h_crop w_crop) h w C -> n_img (h_crop h) (w_crop w) C', # h_crop=h_crop, # w_crop=w_crop, # ) return image_features_hd def add_image_newline(self, image_features_hd): """ image_features_hd: (num_images, h_crop*12, w_crop*12, 4096) output: (num_images, (h_crop*12) * (w_crop*12+1), 4096) """ num_images, h, w, hid_dim = image_features_hd.shape # add the newline token to the HD image feature patches newline_embeddings = self.sub_GN.expand(num_images, h, -1, -1) # (n_img, h, 1, hid_dim) image_features_hd_newline = torch.cat( [image_features_hd, newline_embeddings], dim=2 ).reshape(num_images, -1, hid_dim) return image_features_hd_newline