|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Image processor class for Phi3-V.""" |
|
|
|
from typing import List, Optional, Union |
|
|
|
import numpy as np |
|
|
|
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature |
|
from transformers.image_transforms import ( |
|
convert_to_rgb, |
|
) |
|
from transformers.image_utils import ( |
|
OPENAI_CLIP_MEAN, |
|
OPENAI_CLIP_STD, |
|
ImageInput, |
|
make_list_of_images, |
|
valid_images, |
|
) |
|
from transformers.utils import TensorType, is_vision_available, logging |
|
|
|
from transformers import AutoImageProcessor |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
if is_vision_available(): |
|
from PIL import Image |
|
|
|
import torch |
|
import torchvision |
|
|
|
def padding_336(b): |
|
width, height = b.size |
|
tar = int(np.ceil(height / 336) * 336) |
|
top_padding = int((tar - height)/2) |
|
bottom_padding = tar - height - top_padding |
|
left_padding = 0 |
|
right_padding = 0 |
|
b = torchvision.transforms.functional.pad(b, [left_padding, top_padding, right_padding, bottom_padding], fill=[255,255,255]) |
|
|
|
return b |
|
|
|
def calc_padded_size(width, height, padding_unit=336): |
|
target_height = int(np.ceil(height / padding_unit) * padding_unit) |
|
top_padding = int((target_height - height) / 2) |
|
bottom_padding = target_height - height - top_padding |
|
left_padding = 0 |
|
right_padding = 0 |
|
padded_width = width + left_padding + right_padding |
|
padded_height = height + top_padding + bottom_padding |
|
return padded_width, padded_height |
|
|
|
def HD_transform(img, hd_num=16): |
|
width, height = img.size |
|
trans = False |
|
if width < height: |
|
img = img.transpose(Image.TRANSPOSE) |
|
trans = True |
|
width, height = img.size |
|
ratio = (width/ height) |
|
scale = 1 |
|
while scale*np.ceil(scale/ratio) <= hd_num: |
|
scale += 1 |
|
scale -= 1 |
|
new_w = int(scale * 336) |
|
new_h = int(new_w / ratio) |
|
|
|
img = torchvision.transforms.functional.resize(img, [new_h, new_w],) |
|
img = padding_336(img) |
|
width, height = img.size |
|
if trans: |
|
img = img.transpose(Image.TRANSPOSE) |
|
|
|
return img |
|
|
|
def calc_hd_transform_size(width, height, hd_num=16): |
|
transposed = False |
|
if width < height: |
|
width, height = height, width |
|
transposed = True |
|
|
|
ratio = width / height |
|
scale = 1 |
|
while scale * np.ceil(scale / ratio) <= hd_num: |
|
scale += 1 |
|
scale -= 1 |
|
|
|
new_width = int(scale * 336) |
|
new_height = int(new_width / ratio) |
|
|
|
padded_width, padded_height = calc_padded_size(new_width, new_height) |
|
|
|
if transposed: |
|
padded_width, padded_height = padded_height, padded_width |
|
|
|
return padded_width, padded_height |
|
|
|
def pad_to_max_num_crops_tensor(images, max_crops=5): |
|
""" |
|
images: B x 3 x H x W, B<=max_crops |
|
""" |
|
B, _, H, W = images.shape |
|
if B < max_crops: |
|
pad = torch.zeros(max_crops - B, 3, H, W, dtype=images.dtype, device=images.device) |
|
images = torch.cat([images, pad], dim=0) |
|
return images |
|
|
|
|
|
class Phi3VImageProcessor(BaseImageProcessor): |
|
r""" |
|
Constructs a Phi3 image processor. Based on [`CLIPImageProcessor`] with incorporation of additional techniques |
|
for processing high resolution images as explained in the [InternLM-XComposer2-4KHD](https://arxiv.org/pdf/2404.06512) |
|
|
|
Args: |
|
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`): |
|
Mean to use if normalizing the image. This is a float or list of floats the length of the number of |
|
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. |
|
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`): |
|
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the |
|
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. |
|
Can be overridden by the `image_std` parameter in the `preprocess` method. |
|
do_convert_rgb (`bool`, *optional*, defaults to `True`): |
|
Whether to convert the image to RGB. |
|
""" |
|
|
|
model_input_names = ["pixel_values"] |
|
|
|
def __init__( |
|
self, |
|
num_crops: int = 1, |
|
image_mean: Optional[Union[float, List[float]]] = None, |
|
image_std: Optional[Union[float, List[float]]] = None, |
|
do_convert_rgb: bool = True, |
|
**kwargs, |
|
) -> None: |
|
super().__init__(**kwargs) |
|
self.num_crops = num_crops |
|
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN |
|
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD |
|
self.do_convert_rgb = do_convert_rgb |
|
|
|
def calc_num_image_tokens( |
|
self, |
|
images: ImageInput |
|
): |
|
""" Calculate the number of image tokens for each image. |
|
Args: |
|
images (`ImageInput`): |
|
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If |
|
passing in images with pixel values between 0 and 1, set `do_rescale=False`. |
|
""" |
|
images = make_list_of_images(images) |
|
|
|
if not valid_images(images): |
|
raise ValueError( |
|
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " |
|
"torch.Tensor, tf.Tensor or jax.ndarray." |
|
) |
|
|
|
images = [image.convert('RGB') for image in images] |
|
|
|
elems = [HD_transform(im, hd_num = self.num_crops) for im in images] |
|
shapes = [[im.size[1], im.size[0]] for im in elems] |
|
num_img_tokens = [int((h//336*w//336+1)*144 + 1 + (h//336+1)*12) for h, w in shapes] |
|
return num_img_tokens |
|
|
|
def calc_num_image_tokens_from_image_size(self, width, height): |
|
""" |
|
Calculate the number of image tokens for a given image size. |
|
Args: |
|
width (`int`): Width of the image. |
|
height (`int`): Height of the image. |
|
""" |
|
new_width, new_height = calc_hd_transform_size(width, height, hd_num=self.num_crops) |
|
num_img_tokens = int((new_height // 336 * new_width // 336 + 1) * 144 + 1 + (new_height // 336 + 1) * 12) |
|
return num_img_tokens |
|
|
|
def preprocess( |
|
self, |
|
images: ImageInput, |
|
image_mean: Optional[Union[float, List[float]]] = None, |
|
image_std: Optional[Union[float, List[float]]] = None, |
|
do_convert_rgb: bool = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
): |
|
""" |
|
Args: |
|
images (`ImageInput`): |
|
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If |
|
passing in images with pixel values between 0 and 1, set `do_rescale=False`. |
|
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): |
|
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. |
|
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): |
|
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to |
|
`True`. |
|
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): |
|
Whether to convert the image to RGB. |
|
return_tensors (`str` or `TensorType`, *optional*): |
|
The type of tensors to return. Can be one of: |
|
- Unset: Return a list of `np.ndarray`. |
|
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. |
|
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. |
|
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. |
|
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. |
|
""" |
|
image_mean = image_mean if image_mean is not None else self.image_mean |
|
image_std = image_std if image_std is not None else self.image_std |
|
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb |
|
|
|
images = make_list_of_images(images) |
|
|
|
if not valid_images(images): |
|
raise ValueError( |
|
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " |
|
"torch.Tensor, tf.Tensor or jax.ndarray." |
|
) |
|
|
|
if do_convert_rgb: |
|
images = [convert_to_rgb(image) for image in images] |
|
|
|
image_sizes = [] |
|
img_processor = torchvision.transforms.Compose([ |
|
torchvision.transforms.ToTensor(), |
|
torchvision.transforms.Normalize(image_mean, image_std) |
|
]) |
|
|
|
|
|
|
|
|
|
images = [image.convert('RGB') for image in images] |
|
elems = [HD_transform(im, hd_num = self.num_crops) for im in images] |
|
|
|
hd_images = [img_processor(im) for im in elems] |
|
|
|
global_image = [torch.nn.functional.interpolate(im.unsqueeze(0).float(), size=(336, 336), mode='bicubic',).to(im.dtype) for im in hd_images] |
|
|
|
|
|
shapes = [[im.size(1), im.size(2)] for im in hd_images] |
|
num_img_tokens = [int((h//336*w//336+1)*144 + 1 + (h//336+1)*12) for h, w in shapes] |
|
|
|
|
|
hd_images_reshape = [im.reshape(1, 3, h//336, 336, w//336, 336).permute(0,2,4,1,3,5).reshape(-1, 3, 336, 336).contiguous() for im, (h, w) in zip(hd_images, shapes)] |
|
|
|
hd_images_reshape = [torch.cat([_global_image] + [_im], dim=0) for _global_image, _im in zip(global_image, hd_images_reshape)] |
|
|
|
|
|
image_transformed = [pad_to_max_num_crops_tensor(im, self.num_crops+1) for im in hd_images_reshape] |
|
image_transformed = torch.stack(image_transformed, dim=0) |
|
image_sizes = [torch.LongTensor(_shapes) for _shapes in shapes] |
|
padded_images = image_transformed |
|
image_sizes = shapes |
|
|
|
data = {"pixel_values": padded_images, |
|
"image_sizes": image_sizes, |
|
"num_img_tokens": num_img_tokens |
|
} |
|
|
|
return BatchFeature(data=data, tensor_type=return_tensors) |
|
|
|
AutoImageProcessor.register("Phi3VImageProcessor", Phi3VImageProcessor) |