Pengcheng He
commited on
Commit
·
52978a1
1
Parent(s):
3a609be
Add deberta v3 small model
Browse files- README.md +40 -0
- config.json +22 -0
- pytorch.model.bin +3 -0
- spm.model +3 -0
- tokenizer_config.json +4 -0
README.md
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
tags: deberta
|
4 |
+
thumbnail: https://huggingface.co/front/thumbnails/microsoft.png
|
5 |
+
license: mit
|
6 |
+
---
|
7 |
+
|
8 |
+
## DeBERTa: Decoding-enhanced BERT with Disentangled Attention
|
9 |
+
|
10 |
+
[DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. With those two improvements, DeBERTa out perform RoBERTa on a majority of NLU tasks with 80GB training data.
|
11 |
+
|
12 |
+
Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates.
|
13 |
+
|
14 |
+
This is the DeBERTa V3 small model with 6 layers, 768 hidden size. Total parameters is 143M while Embedding layer take about 98M due to the usage of 128k vocabulary. It's trained with 160GB data.
|
15 |
+
For more details of our V3 model, please check appendix A11 in our paper.
|
16 |
+
|
17 |
+
#### Fine-tuning on NLU tasks
|
18 |
+
|
19 |
+
We present the dev results on SQuAD 1.1/2.0 and MNLI tasks.
|
20 |
+
| Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m |
|
21 |
+
|-------------------|-----------|-----------|--------|
|
22 |
+
| RoBERTa-base | 91.5/84.6 | 83.7/80.5 | 87.6 |
|
23 |
+
| XLNet-base | -/- | -/80.2 | 86.8 |
|
24 |
+
| **DeBERTa-v3-small** | 93.1/87.2 | 86.2/83.1 | 88.2 |
|
25 |
+
|
26 |
+
|
27 |
+
### Citation
|
28 |
+
|
29 |
+
If you find DeBERTa useful for your work, please cite the following paper:
|
30 |
+
|
31 |
+
``` latex
|
32 |
+
@inproceedings{
|
33 |
+
he2021deberta,
|
34 |
+
title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION},
|
35 |
+
author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen},
|
36 |
+
booktitle={International Conference on Learning Representations},
|
37 |
+
year={2021},
|
38 |
+
url={https://openreview.net/forum?id=XPZIaotutsD}
|
39 |
+
}
|
40 |
+
```
|
config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_type": "deberta-v2",
|
3 |
+
"attention_probs_dropout_prob": 0.1,
|
4 |
+
"hidden_act": "gelu",
|
5 |
+
"hidden_dropout_prob": 0.1,
|
6 |
+
"hidden_size": 768,
|
7 |
+
"initializer_range": 0.02,
|
8 |
+
"intermediate_size": 3072,
|
9 |
+
"max_position_embeddings": 512,
|
10 |
+
"relative_attention": true,
|
11 |
+
"position_buckets": 256,
|
12 |
+
"norm_rel_ebd": "layer_norm",
|
13 |
+
"share_att_key": true,
|
14 |
+
"pos_att_type": "p2c|c2p",
|
15 |
+
"layer_norm_eps": 1e-7,
|
16 |
+
"max_relative_positions": -1,
|
17 |
+
"position_biased_input": false,
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 6,
|
20 |
+
"type_vocab_size": 0,
|
21 |
+
"vocab_size": 128100
|
22 |
+
}
|
pytorch.model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e2ad5b2a38c3190f8d6eb0942783727bdbe79cfa1c39da3ea3d8a22a539099c9
|
3 |
+
size 378454099
|
spm.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
|
3 |
+
size 2464616
|
tokenizer_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_lower_case": false,
|
3 |
+
"vocab_type": "spm"
|
4 |
+
}
|