|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
import math |
|
import copy |
|
from typing import Any, Dict, Optional, Tuple, Union |
|
from dataclasses import dataclass, field |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from einops import rearrange |
|
from transformers.activations import ACT2FN |
|
from transformers import PretrainedConfig, PreTrainedModel |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
|
|
from .configuration_mixformer_sequential import MixFormerSequentialConfig |
|
|
|
@dataclass |
|
class InferenceParams: |
|
"""Inference parameters passed to model to efficiently calculate |
|
and store context during inference. |
|
|
|
Reference: |
|
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/utils/generation.py. |
|
|
|
Args: |
|
max_sequence_len: Maximum sequence length. |
|
max_batch_size: Maximum batch size. |
|
sequence_len_offset: Sequence length offset. |
|
batch_size_offset: Batch size offset. |
|
key_value_memory_dict: Key value memory dictionary. |
|
fused_ft_kernel: Whether to use fused kernel for fast inference. |
|
lengths_per_sample: Lengths per sample. |
|
|
|
""" |
|
|
|
max_sequence_len: int = field(metadata={"help": "Maximum sequence length."}) |
|
|
|
max_batch_size: int = field(metadata={"help": "Maximum batch size."}) |
|
|
|
sequence_len_offset: int = field(default=0, metadata={"help": "Sequence length offset."}) |
|
|
|
batch_size_offset: int = field(default=0, metadata={"help": "Batch size offset."}) |
|
|
|
key_value_memory_dict: Dict[str, Any] = field( |
|
default_factory=dict, metadata={"help": "Key value memory dictionary."} |
|
) |
|
|
|
fused_ft_kernel: bool = field(default=False, metadata={"help": "Whether to use fused kernel for fast inference."}) |
|
|
|
lengths_per_sample: torch.Tensor = field(default=None, metadata={"help": "Lengths per sample."}) |
|
|
|
|
|
class Embedding(nn.Module): |
|
"""Token embedding with dropout.""" |
|
|
|
def __init__(self, config: PretrainedConfig) -> None: |
|
super().__init__() |
|
|
|
self.wte = nn.Embedding(config.vocab_size, config.n_embd) |
|
self.drop = nn.Dropout(config.embd_pdrop) |
|
|
|
def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor: |
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
|
|
hidden_states = self.wte(input_ids) |
|
hidden_states = self.drop(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class RotaryEmbedding(nn.Module): |
|
"""Rotary embeddings. |
|
|
|
Reference: |
|
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/layers/rotary.py. |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
base: int = 10000, |
|
scale_base: Optional[float] = None, |
|
device: Optional[str] = None, |
|
**kwargs, |
|
) -> None: |
|
super().__init__() |
|
|
|
if scale_base is not None: |
|
raise NotImplementedError |
|
|
|
|
|
self.dim = dim |
|
self.base = base |
|
self.scale_base = scale_base |
|
self.device = device |
|
|
|
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim)) |
|
self.register_buffer("inv_freq", inv_freq) |
|
|
|
scale = ( |
|
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim) |
|
if scale_base is not None |
|
else None |
|
) |
|
self.register_buffer("scale", scale) |
|
|
|
self._seq_len_cached = 0 |
|
self._cos_cached = None |
|
self._sin_cached = None |
|
self._cos_k_cached = None |
|
self._sin_k_cached = None |
|
|
|
def _update_cos_sin_cache(self, x: torch.FloatTensor, seqlen_offset: int = 0) -> None: |
|
|
|
|
|
seqlen = x.shape[1] + seqlen_offset |
|
|
|
|
|
|
|
if self.inv_freq.dtype != "torch.float32": |
|
self.inv_freq = 1.0 / ( |
|
self.base ** (torch.arange(0, self.dim, 2, device=self.device, dtype=torch.float32) / self.dim) |
|
) |
|
|
|
if seqlen > self._seq_len_cached or self._cos_cached.device != x.device or self._cos_cached.dtype != x.dtype: |
|
self._seq_len_cached = seqlen |
|
t = torch.arange(seqlen, device=x.device, dtype=torch.float32) |
|
|
|
|
|
|
|
freqs = torch.outer(t, self.inv_freq.to(device=t.device, dtype=torch.float32)) |
|
if self.scale is None: |
|
self._cos_cached = torch.cos(freqs).to(x.dtype) |
|
self._sin_cached = torch.sin(freqs).to(x.dtype) |
|
else: |
|
power = ( |
|
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2 |
|
) / self.scale_base |
|
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1") |
|
|
|
|
|
self._cos_cached = (torch.cos(freqs) * scale).to(x.dtype) |
|
self._sin_cached = (torch.sin(freqs) * scale).to(x.dtype) |
|
self._cos_k_cached = (torch.cos(freqs) / scale).to(x.dtype) |
|
self._sin_k_cached = (torch.sin(freqs) / scale).to(x.dtype) |
|
|
|
def _apply_rotary_emb_qkv( |
|
self, |
|
qkv: torch.FloatTensor, |
|
sin: torch.FloatTensor, |
|
cos: torch.FloatTensor, |
|
sin_k: Optional[torch.FloatTensor] = None, |
|
cos_k: Optional[torch.FloatTensor] = None, |
|
) -> torch.FloatTensor: |
|
_, seqlen, three, _, headdim = qkv.shape |
|
assert three == 3 |
|
|
|
rotary_seqlen, rotary_dim = cos.shape |
|
rotary_dim *= 2 |
|
assert rotary_dim <= headdim |
|
assert seqlen <= rotary_seqlen |
|
|
|
cos_k = cos if cos_k is None else cos_k |
|
sin_k = sin if sin_k is None else sin_k |
|
assert sin.shape == cos_k.shape == sin_k.shape == (rotary_seqlen, rotary_dim // 2) |
|
|
|
q_rot = qkv[:, :, 0, :, :rotary_dim] |
|
q_pass = qkv[:, :, 0, :, rotary_dim:] |
|
|
|
k_rot = qkv[:, :, 1, :, :rotary_dim] |
|
k_pass = qkv[:, :, 1, :, rotary_dim:] |
|
|
|
|
|
q1, q2 = q_rot.chunk(2, dim=-1) |
|
k1, k2 = k_rot.chunk(2, dim=-1) |
|
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d") |
|
|
|
|
|
q1, q2, k1, k2, c, s = [t.to(dtype=torch.float32) for t in [q1, q2, k1, k2, c, s]] |
|
|
|
|
|
q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype) |
|
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype) |
|
|
|
return torch.cat( |
|
[ |
|
torch.cat([q_rot, q_pass], axis=-1).unsqueeze(2), |
|
torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2), |
|
qkv[:, :, 2:3, :, :], |
|
], |
|
axis=2, |
|
) |
|
|
|
def forward(self, qkv: torch.Tensor, seqlen_offset: int = 0) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
|
self._update_cos_sin_cache(qkv, seqlen_offset) |
|
return self._apply_rotary_emb_qkv(qkv, self._sin_cached[seqlen_offset:], self._cos_cached[seqlen_offset:]) |
|
|
|
|
|
class MLP(nn.Module): |
|
"""Multi-Layer Perceptron. |
|
|
|
Reference: |
|
Attention Is All You Need. |
|
https://arxiv.org/pdf/1706.03762.pdf. |
|
|
|
""" |
|
|
|
def __init__(self, config: PretrainedConfig, n_inner: Optional[int] = None, act_fn: Optional[str] = None) -> None: |
|
super().__init__() |
|
|
|
act_fn = config.activation_function if act_fn is None else act_fn |
|
assert act_fn in ACT2FN.keys(), f"`act_fn` must be one of: {ACT2FN.keys()}." |
|
|
|
n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner |
|
n_inner = n_inner if n_inner is not None else 4 * config.n_embd |
|
|
|
self.fc1 = nn.Linear(config.n_embd, n_inner) |
|
self.fc2 = nn.Linear(n_inner, config.n_embd) |
|
self.act = ACT2FN[act_fn] |
|
|
|
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: |
|
hidden_states = self.fc1(hidden_states) |
|
hidden_states = self.act(hidden_states) |
|
hidden_states = self.fc2(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class SelfAttention(nn.Module): |
|
"""Self-attention layer (compatible with PyTorch). |
|
|
|
Reference: |
|
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py. |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
causal: bool = True, |
|
softmax_scale: Optional[float] = None, |
|
attention_dropout: float = 0.0, |
|
) -> None: |
|
super().__init__() |
|
|
|
self.causal = causal |
|
self.softmax_scale = softmax_scale |
|
self.drop = nn.Dropout(attention_dropout) |
|
|
|
def forward( |
|
self, |
|
qkv: torch.FloatTensor, |
|
causal: bool = None, |
|
attention_mask: Optional[torch.BoolTensor] = None, |
|
**kwargs, |
|
) -> torch.FloatTensor: |
|
causal = self.causal if causal is None else causal |
|
batch_size, seq_len = qkv.shape[0], qkv.shape[1] |
|
q, k, v = qkv.unbind(dim=2) |
|
|
|
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1]) |
|
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale) |
|
|
|
if attention_mask is not None: |
|
padding_mask = torch.full((batch_size, seq_len), -10000.0, dtype=scores.dtype, device=scores.device) |
|
padding_mask.masked_fill_(attention_mask, 0.0) |
|
|
|
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s") |
|
|
|
if causal: |
|
causal_mask = torch.triu(torch.full((seq_len, seq_len), -10000.0, device=scores.device), 1) |
|
scores = scores + causal_mask.to(dtype=scores.dtype) |
|
|
|
attention = torch.softmax(scores, dim=-1, dtype=v.dtype) |
|
attention = self.drop(attention) |
|
|
|
output = torch.einsum("bhts,bshd->bthd", attention, v) |
|
|
|
return output |
|
|
|
|
|
class CrossAttention(nn.Module): |
|
"""Cross-attention layer (compatible with PyTorch). |
|
|
|
Reference: |
|
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py. |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
causal: bool = True, |
|
softmax_scale: Optional[float] = None, |
|
attention_dropout: float = 0.0, |
|
) -> None: |
|
super().__init__() |
|
|
|
self.causal = causal |
|
self.softmax_scale = softmax_scale |
|
self.drop = nn.Dropout(attention_dropout) |
|
|
|
def forward( |
|
self, |
|
q: torch.FloatTensor, |
|
kv: torch.FloatTensor, |
|
causal: bool = None, |
|
attention_mask: Optional[torch.BoolTensor] = None, |
|
**kwargs, |
|
) -> torch.FloatTensor: |
|
causal = self.causal if causal is None else causal |
|
batch_size, seq_len_q = q.shape[0], q.shape[1] |
|
assert kv.shape[0] == batch_size and kv.shape[3] == q.shape[2] and kv.shape[4] == q.shape[3] |
|
|
|
seq_len_k = kv.shape[1] |
|
k, v = kv.unbind(dim=2) |
|
|
|
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1]) |
|
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale) |
|
|
|
if attention_mask is not None: |
|
padding_mask = torch.full((batch_size, seq_len_k), -10000.0, dtype=scores.dtype, device=scores.device) |
|
padding_mask.masked_fill_(attention_mask, 0.0) |
|
|
|
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s") |
|
|
|
if causal: |
|
causal_mask = torch.triu(torch.full((seq_len_q, seq_len_k), -10000.0, device=scores.device), 1) |
|
scores = scores + causal_mask.to(dtype=scores.dtype) |
|
|
|
attention = torch.softmax(scores, dim=-1, dtype=v.dtype) |
|
attention = self.drop(attention) |
|
|
|
output = torch.einsum("bhts,bshd->bthd", attention, v) |
|
|
|
return output |
|
|
|
|
|
def find_mha_dims( |
|
config: PretrainedConfig, n_head: Optional[int] = None, head_dim: Optional[int] = None |
|
) -> Tuple[int, int]: |
|
"""Validate and return the number of heads and head dimension for multi-head attention. |
|
|
|
Args: |
|
config: Model configuration. |
|
n_head: Number of heads. |
|
head_dim: Head dimension. |
|
|
|
Returns: |
|
Number of heads and head dimension. |
|
|
|
""" |
|
|
|
assert all( |
|
hasattr(config, attr) for attr in ["n_embd", "n_head"] |
|
), "`config` must have `n_embd` and `n_head` attributes." |
|
|
|
if head_dim is None: |
|
assert ( |
|
config.n_embd % config.n_head == 0 |
|
), f"Hidden size ({config.n_embd}) must be divisible by the number of heads ({config.n_head})." |
|
|
|
if n_head is None and head_dim is None: |
|
head_dim = config.n_embd // config.n_head |
|
n_head = config.n_head |
|
elif n_head is None or head_dim is None: |
|
raise ValueError("`n_head` and `head_dim` must be both specified or `None`.") |
|
|
|
return n_head, head_dim |
|
|
|
|
|
def update_kv_cache(kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int) -> torch.FloatTensor: |
|
"""Update the key-value cache for inference. |
|
|
|
Reference: |
|
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py. |
|
|
|
Args: |
|
kv: Key-value tensor. |
|
inference_params: Inference parameters. |
|
layer_idx: Layer index. |
|
|
|
Returns: |
|
Updated key-value tensor. |
|
|
|
""" |
|
|
|
num_heads, head_dim = kv.shape[-2:] |
|
|
|
if layer_idx not in inference_params.key_value_memory_dict: |
|
kv_cache = torch.empty( |
|
inference_params.max_batch_size, |
|
inference_params.max_sequence_len, |
|
2, |
|
num_heads, |
|
head_dim, |
|
dtype=kv.dtype, |
|
device=kv.device, |
|
) |
|
inference_params.key_value_memory_dict[layer_idx] = kv_cache |
|
else: |
|
if not inference_params.fused_ft_kernel: |
|
kv_cache = inference_params.key_value_memory_dict[layer_idx] |
|
else: |
|
k_cache, v_cache = inference_params.key_value_memory_dict[layer_idx] |
|
kv_cache = None |
|
|
|
batch_start = inference_params.batch_size_offset |
|
batch_end = batch_start + kv.shape[0] |
|
assert batch_end <= (kv_cache.shape[0] if kv_cache is not None else v_cache.shape[0]) |
|
|
|
sequence_start = inference_params.sequence_len_offset |
|
sequence_end = sequence_start + kv.shape[1] |
|
assert sequence_end <= (kv_cache.shape[1] if kv_cache is not None else v_cache.shape[2]) |
|
|
|
if not inference_params.fused_ft_kernel: |
|
assert kv_cache is not None |
|
|
|
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv |
|
kv = kv_cache[batch_start:batch_end, :sequence_end, ...] |
|
|
|
return kv |
|
|
|
assert inference_params.sequence_len_offset == 0 |
|
assert kv.dtype in [torch.float16, torch.bfloat16, torch.float32] |
|
|
|
packsize = 4 if kv.dtype == torch.float32 else 8 |
|
|
|
if kv_cache is not None: |
|
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv |
|
k_cache = rearrange(kv_cache[:, :, 0], "b s h (d packsize) -> b h d s packsize", packsize=packsize).contiguous() |
|
v_cache = rearrange(kv_cache[:, :, 1], "b s h d -> b h s d").contiguous() |
|
inference_params.key_value_memory_dict[layer_idx] = (k_cache, v_cache) |
|
else: |
|
k_cache[batch_start:batch_end, :, :, :sequence_end, :] = rearrange( |
|
kv[:, :, 0], "b s h (d packsize) -> b h d s packsize", packsize=packsize |
|
) |
|
v_cache[batch_start:batch_end, :, :sequence_end, :] = rearrange(kv[:, :, 1], "b s h d -> b h s d") |
|
|
|
return kv |
|
|
|
|
|
class MHA(nn.Module): |
|
"""Multi-head attention layer.""" |
|
|
|
def __init__( |
|
self, |
|
config: PretrainedConfig, |
|
dtype: Optional[torch.dtype] = None, |
|
device: Optional[str] = None, |
|
rotary_dim: Optional[int] = None, |
|
rotary_emb_scale_base: Optional[float] = None, |
|
n_head: Optional[int] = None, |
|
head_dim: Optional[int] = None, |
|
bias: bool = True, |
|
causal: bool = True, |
|
softmax_scale: Optional[float] = None, |
|
dropout: float = 0.0, |
|
layer_idx: Optional[int] = None, |
|
return_residual: bool = False, |
|
checkpointing: bool = False, |
|
) -> None: |
|
super().__init__() |
|
|
|
|
|
self.rotary_emb_dim = rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0) |
|
if self.rotary_emb_dim > 0: |
|
rotary_kwargs = {"device": device} |
|
if rotary_emb_scale_base is not None and rotary_emb_scale_base > 0.0: |
|
rotary_kwargs["scale_base"] = rotary_emb_scale_base |
|
self.rotary_emb = RotaryEmbedding(self.rotary_emb_dim, **rotary_kwargs) |
|
|
|
|
|
self.n_head, self.head_dim = find_mha_dims(config, n_head, head_dim) |
|
op_size = self.n_head * self.head_dim |
|
hidden_size = config.n_embd |
|
|
|
self.Wqkv = nn.Linear(hidden_size, 3 * op_size, bias=bias, device=device, dtype=dtype) |
|
self.out_proj = nn.Linear(op_size, hidden_size, bias=bias, device=device, dtype=dtype) |
|
|
|
|
|
self.inner_attn = SelfAttention(causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout) |
|
self.inner_cross_attn = CrossAttention(causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout) |
|
|
|
self.layer_idx = layer_idx |
|
self.return_residual = return_residual |
|
self.checkpointing = checkpointing |
|
|
|
def forward( |
|
self, |
|
x: torch.FloatTensor, |
|
past_key_values: Optional[InferenceParams] = None, |
|
attention_mask: Optional[torch.BoolTensor] = None, |
|
cu_seqlens: Optional[torch.LongTensor] = None, |
|
max_seqlen: Optional[int] = None, |
|
**kwargs, |
|
) -> Tuple[torch.FloatTensor, torch.FloatTensor]: |
|
qkv = self.Wqkv(x) |
|
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim) |
|
|
|
seqlen_offset = past_key_values.sequence_len_offset if past_key_values is not None else 0 |
|
if self.rotary_emb_dim > 0: |
|
qkv = self.rotary_emb(qkv, seqlen_offset=seqlen_offset) |
|
|
|
if past_key_values is not None: |
|
kv = update_kv_cache(qkv[:, :, 1:], past_key_values, self.layer_idx) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attention_mask[0] if isinstance(attention_mask, tuple) else attention_mask |
|
attention_mask = attention_mask.bool().to(qkv.device) |
|
|
|
attention_kwargs = {"attention_mask": attention_mask} |
|
|
|
if past_key_values is None or seqlen_offset == 0: |
|
if self.checkpointing: |
|
attn_output = torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, **attention_kwargs) |
|
else: |
|
attn_output = self.inner_attn(qkv, **attention_kwargs) |
|
else: |
|
q = qkv[:, :, 0] |
|
causal = None if past_key_values.sequence_len_offset == 0 else False |
|
attn_output = self.inner_cross_attn(q, kv, causal=causal, **attention_kwargs) |
|
|
|
output = rearrange(attn_output, "... h d -> ... (h d)") |
|
output = self.out_proj(output) |
|
|
|
return output if not self.return_residual else (output, x) |
|
|
|
|
|
class ParallelBlock(nn.Module): |
|
"""Parallel block. |
|
|
|
This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen). |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
config: PretrainedConfig, |
|
block_idx: Optional[int] = None, |
|
) -> None: |
|
super().__init__() |
|
|
|
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) |
|
self.resid_dropout = nn.Dropout(config.resid_pdrop) |
|
self.block_idx = block_idx |
|
|
|
self.mixer = MHA(config, layer_idx=block_idx) |
|
self.mlp = MLP(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None, |
|
attention_mask: Optional[torch.BoolTensor] = None, |
|
**kwargs, |
|
) -> torch.FloatTensor: |
|
residual = hidden_states |
|
hidden_states = self.ln(hidden_states) |
|
|
|
attn_outputs = self.mixer(hidden_states, past_key_values=past_key_values, attention_mask=attention_mask) |
|
if isinstance(attn_outputs, tuple): |
|
attn_outputs = attn_outputs[0] |
|
|
|
attn_outputs = self.resid_dropout(attn_outputs) |
|
feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states)) |
|
|
|
hidden_states = attn_outputs + feed_forward_hidden_states + residual |
|
|
|
return hidden_states |
|
|
|
|
|
class CausalLMHead(nn.Module): |
|
"""Causal Language Modeling head. |
|
|
|
Reference: |
|
Improving Language Understanding by Generative Pre-Training. |
|
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf. |
|
|
|
""" |
|
|
|
def __init__(self, config: PretrainedConfig) -> None: |
|
super().__init__() |
|
|
|
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) |
|
self.linear = nn.Linear(config.n_embd, config.vocab_size) |
|
|
|
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: |
|
hidden_states = self.ln(hidden_states) |
|
logits = self.linear(hidden_states).to(torch.float32) |
|
|
|
return logits |
|
|
|
|
|
class CausalLMLoss(nn.Module): |
|
"""Causal Language Modeling loss. |
|
|
|
Reference: |
|
Improving Language Understanding by Generative Pre-Training. |
|
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf. |
|
|
|
""" |
|
|
|
def __init__(self, shift_labels: bool = True) -> None: |
|
super().__init__() |
|
|
|
self.shift_labels = shift_labels |
|
self.loss_fct = nn.CrossEntropyLoss() |
|
|
|
def forward(self, logits: torch.FloatTensor, labels: torch.LongTensor) -> torch.FloatTensor: |
|
if self.shift_labels: |
|
logits = logits[..., :-1, :].contiguous() |
|
labels = labels[..., 1:].contiguous() |
|
|
|
loss = self.loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1)) |
|
|
|
return loss |
|
|
|
|
|
class MixFormerSequentialPreTrainedModel(PreTrainedModel): |
|
"""MixFormer (sequential for DeepSpeed) pre-trained model.""" |
|
|
|
config_class = MixFormerSequentialConfig |
|
base_model_prefix = "transformer" |
|
supports_gradient_checkpointing = True |
|
|
|
def __init__(self, *inputs, **kwargs) -> None: |
|
super().__init__(*inputs, **kwargs) |
|
|
|
def _init_weights(self, module: nn.Module) -> None: |
|
if isinstance(module, (nn.Linear,)): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids: torch.LongTensor, |
|
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None, |
|
attention_mask: Optional[torch.BoolTensor] = None, |
|
**kwargs, |
|
) -> Dict[str, Any]: |
|
if attention_mask is not None and torch.any(~attention_mask.bool()): |
|
total_seq_len = torch.sum(attention_mask, dim=1) |
|
max_seq_len = torch.max(total_seq_len) |
|
|
|
total_seq_len = torch.cat((torch.tensor([0], device=attention_mask.device), total_seq_len)).unsqueeze(1) |
|
cumulative_seq_len = torch.cumsum(total_seq_len, dim=0).squeeze(1).to(torch.int32) |
|
attention_mask = (attention_mask.bool(), cumulative_seq_len, max_seq_len.item()) |
|
else: |
|
attention_mask = None |
|
|
|
if past_key_values is None or not (isinstance(past_key_values, InferenceParams)): |
|
past_key_values = InferenceParams( |
|
max_batch_size=input_ids.shape[0], |
|
max_sequence_len=self.config.n_positions, |
|
sequence_len_offset=0, |
|
batch_size_offset=0, |
|
fused_ft_kernel=False, |
|
key_value_memory_dict={}, |
|
) |
|
else: |
|
|
|
past_key_values.sequence_len_offset = len(input_ids[0]) - 1 |
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
|
|
return { |
|
"input_ids": input_ids, |
|
"past_key_values": past_key_values, |
|
"attention_mask": attention_mask, |
|
} |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, MixFormerSequentialPreTrainedModel): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
class MixFormerSequentialForCausalLM(MixFormerSequentialPreTrainedModel): |
|
"""MixFormer (sequential for DeepSpeed) for Causal Language Modeling.""" |
|
|
|
_keys_to_ignore_on_load_missing = [""] |
|
_keys_to_ignore_on_load_unexpected = [r"layers\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"] |
|
_no_split_modules = ["ParallelBlock"] |
|
|
|
def __init__(self, config: MixFormerSequentialConfig) -> None: |
|
super().__init__(config) |
|
|
|
modules = [Embedding(config)] |
|
modules += [ParallelBlock(config, block_idx=i) for i in range(config.n_layer)] |
|
modules.append(CausalLMHead(config)) |
|
|
|
self.layers = nn.Sequential(*modules) |
|
self.loss = CausalLMLoss() |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> nn.Embedding: |
|
return self.layers[0].wte |
|
|
|
def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None: |
|
self.layers[0].wte = new_embeddings |
|
|
|
def get_output_embeddings(self) -> nn.Linear: |
|
return self.layers[-1].linear |
|
|
|
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None: |
|
self.layers[-1].linear = new_embeddings |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor, |
|
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None, |
|
attention_mask: Optional[torch.BoolTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
**kwargs, |
|
) -> CausalLMOutputWithPast: |
|
if attention_mask is not None and self.training: |
|
print("`attention_mask` is not supported during training. Using it might lead to unexpected results.") |
|
|
|
if past_key_values is None and attention_mask is None: |
|
lm_logits = self.layers(input_ids) |
|
else: |
|
hidden_layer = self.layers[0](input_ids) |
|
for module in self.layers[1:-1]: |
|
hidden_layer = module(hidden_layer, past_key_values=past_key_values, attention_mask=attention_mask) |
|
lm_logits = self.layers[-1](hidden_layer) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss = self.loss(lm_logits, labels) |
|
|
|
return CausalLMOutputWithPast(loss=loss, logits=lm_logits, past_key_values=past_key_values) |
|
|