|
---
|
|
language: en
|
|
tags:
|
|
- tapex
|
|
license: mit
|
|
---
|
|
|
|
# TAPEX (large-sized model)
|
|
|
|
TAPEX was proposed in [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou. The original repo can be found [here](https://github.com/microsoft/Table-Pretraining).
|
|
|
|
## Model description
|
|
|
|
TAPEX (**Ta**ble **P**re-training via **Ex**ecution) is a conceptually simple and empirically powerful pre-training approach to empower existing models with *table reasoning* skills. TAPEX realizes table pre-training by learning a neural SQL executor over a synthetic corpus, which is obtained by automatically synthesizing executable SQL queries.
|
|
|
|
TAPEX is based on the BART architecture, the transformer encoder-encoder (seq2seq) model with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder.
|
|
|
|
## Intended Uses
|
|
|
|
⚠️ This model checkpoint is **ONLY** used for fine-tuining on downstream tasks, and you **CANNOT** use this model for simulating neural SQL execution, i.e., employ TAPEX to execute a SQL query on a given table. The one that can neurally execute SQL queries is at [here](https://huggingface.co/microsoft/tapex-large-sql-execution).
|
|
> This separation of two models for two kinds of intention is because of a known issue in BART large, and we recommend readers to see [this comment](https://github.com/huggingface/transformers/issues/15559#issuecomment-1062880564) for more details.
|
|
|
|
### How to Fine-tuning
|
|
|
|
Please find the fine-tuning script [here](https://github.com/SivilTaram/transformers/tree/add_tapex_bis/examples/research_projects/tapex).
|
|
|
|
### BibTeX entry and citation info
|
|
|
|
```bibtex
|
|
@inproceedings{
|
|
liu2022tapex,
|
|
title={{TAPEX}: Table Pre-training via Learning a Neural {SQL} Executor},
|
|
author={Qian Liu and Bei Chen and Jiaqi Guo and Morteza Ziyadi and Zeqi Lin and Weizhu Chen and Jian-Guang Lou},
|
|
booktitle={International Conference on Learning Representations},
|
|
year={2022},
|
|
url={https://openreview.net/forum?id=O50443AsCP}
|
|
}
|
|
``` |