---
language:
- it
license: cc-by-nc-4.0
tags:
- sft
- it
- mistral
- chatml
- axolotl
prompt_template: <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|>
<|im_start|>assistant
model-index:
- name: maestrale-chat-v0.4-beta
results: []
---
# Maestrale chat beta ༄
By @efederici and @mferraretto
## Model description
- **Language Model**: Mistral-7b for the Italian language, continued pre-training for Italian on a curated large-scale high-quality corpus, merged with [occiglot](https://huggingface.co/occiglot/occiglot-7b-eu5).
- **Fine-Tuning**: SFT performed on 1.7M convs/instructions for 2 epochs.
- **DPO**: Aligned with DPO on multiple datasets.
**v0.4**
- Agent
- Improved truthfullness
- Improved Math & Reasoning capabilities
- Mermaid mindmaps
- More latin translations, poems, ...
This model uses ChatML prompt format:
```
<|im_start|>system
Sei un assistente utile.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```
## Scores
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|------------|------:|------|-----:|--------|-----:|---|-----:|
|hellaswag_it| 1|none | 0|acc |0.5270|± |0.0052|
| | |none | 0|acc_norm|0.7037|± |0.0048|
|arc_it | 1|none | 0|acc |0.1771|± |0.0112|
| | |none | 0|acc_norm|0.5218|± |0.0146|
|m_mmlu_it | 0|none | 5|acc |0.5623|± |0.0043|
## Usage:
```python
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
GenerationConfig,
TextStreamer
)
import torch
tokenizer = AutoTokenizer.from_pretrained("mii-llm/maestrale-chat-v0.4-beta")
model = AutoModelForCausalLM.from_pretrained("mii-llm/maestrale-chat-v0.4-beta", load_in_8bit=True, device_map="auto")
gen = GenerationConfig(
do_sample=True,
temperature=0.7,
repetition_penalty=1.2,
top_k=50,
top_p=0.95,
max_new_tokens=500,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.convert_tokens_to_ids("<|im_end|>")
)
streamer = TextStreamer(tokenizer, skip_prompt=True)
messages = [
{"role": "system", "content": "Sei un assistente utile."},
{"role": "user", "content": "{prompt}"}
]
with torch.no_grad():
temp = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(temp, return_tensors="pt").to("cuda")
_ = model.generate(
**inputs,
streamer=streamer,
generation_config=gen
)
```
## Examples
### Mindmaps
```python
messages = [
{"role": "system", "content": "Fornisci una mindmap Mermaid sull'argomento in input."},
{"role": "user", "content": "Argomento: [argomento]"}
]
```
### SQL
```python
schema = "[db schema]"
messages = [
{"role": "system", "content": f"Sei un assistente SQL e il tuo compito è convertire la domanda dell'utente in codice SQL valido rispetto allo schema del database fornito.\n\nSchema:\n```sql\n{schema}\n```"},
{"role": "user", "content": "Conta il numero di X prodotti dall'azienda Y"}
]
```
### Article from index
```python
messages = [
{"role": "system", "content": "Sei un assistente utile."},
{"role": "user", "content": (
"Scrivi un articolo a partire dal titolo e dall'indice dei contenuti.\n\n"
"Titolo: [titolo]\n\n"
"Indice:\n\n"
"1. Introduzione\n"
"2. [heading]\n"
"..."
)}
]
```
## Intended uses & limitations
It's a beta version; it's quite `safe`, and it can refuse to answer to toxic questions.
[](https://github.com/OpenAccess-AI-Collective/axolotl)