Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
2 |
+
import torch
|
3 |
+
|
4 |
+
# Load the model and tokenizer
|
5 |
+
t5ag_model = T5ForConditionalGeneration.from_pretrained("miiiciiii/I-Comprehend_ag")
|
6 |
+
t5ag_tokenizer = T5Tokenizer.from_pretrained("miiiciiii/I-Comprehend_ag")
|
7 |
+
|
8 |
+
def answer_question(question, context):
|
9 |
+
"""Generate an answer for a given question and context."""
|
10 |
+
input_text = f"question: {question} context: {context}"
|
11 |
+
input_ids = t5ag_tokenizer.encode(input_text, return_tensors="pt", max_length=512, truncation=True)
|
12 |
+
|
13 |
+
with torch.no_grad():
|
14 |
+
output = t5ag_model.generate(input_ids, max_length=512, num_return_sequences=1, max_new_tokens=200)
|
15 |
+
|
16 |
+
return t5ag_tokenizer.decode(output[0], skip_special_tokens=True)
|
17 |
+
|
18 |
+
# Example usage
|
19 |
+
question = "What is the location of the Eiffel Tower?"
|
20 |
+
context = "The Eiffel Tower is located in Paris and is one of the most famous landmarks in the world."
|
21 |
+
answer = answer_question(question, context)
|
22 |
+
print("Generated Answer:", answer)
|