File size: 13,747 Bytes
4889a39 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f73dcd56560>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f73dcd565f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f73dcd56680>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f73dcd56710>", "_build": "<function ActorCriticPolicy._build at 0x7f73dcd567a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f73dcd56830>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f73dcd568c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f73dcd56950>", "_predict": "<function ActorCriticPolicy._predict at 0x7f73dcd569e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f73dcd56a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f73dcd56b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f73dcd56b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f73dcd61040>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686383941627089509, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE1XJ77gL5s/Ngrovbxumb6Oqka+wF8aPQAAAAAAAAAATWIxvQqnY7mjNte6gNgCtf2xq7tmwAE6AACAPwAAgD9NHRO9FKyausIq8buNCJE3xr9AOrO6/rYAAIA/AACAP2Yinrs/7bU/pUf6vm1B7D5Qdrc7vsTiPQAAAAAAAAAAZtBePK55lLriyYY7P/7JNrd/4Tp+Lpu6AACAPwAAgD9mRjK6FISeuhoAkzpNY4o1LKqqujlwqbkAAIA/AACAP9qomr0USJi6i5cTuQCVs7RZZKM6C38jNAAAgD8AAIA/GsABvY/CbrpdBJo6PtXatfPQZztEQ7S5AACAPwAAgD+aMZi9w3lYuhjQoDurdnq0/IvhOjRmvboAAIA/AAAAAACY/zvDUVy62yKROLabgjM5PJk6Q/iqtwAAgD8AAIA/zaNKvUi3kLpwEua6jsoZttHLn7lqzgQ6AACAPwAAgD+mnsa9FOCuupwVi7q6Xou1vD74uYIunzkAAIA/AAAAAA2OJr5zDn0/jrp2POP2lb72xJ+9zpHPPAAAAAAAAAAAgAMPPcNtc7o3uou3b1M7sQWEbruO36E2AACAPwAAgD/NqmC8LiOwP3IArb756sq+nO/aO3pqJrwAAAAAAAAAAGb+QT0UwI+6BQHVOl7kbTXId7y65ST3uQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAEAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGfVSwGGEf2MAWyUTegDjAF0lEdAluUKbrkbP3V9lChoBkdAZYtS/CZWrGgHTegDaAhHQJblaUornT11fZQoaAZHQGOvnuJDVpdoB03oA2gIR0CW67d/J/5MdX2UKGgGR0BidMT8HfMwaAdN6ANoCEdAlvAB9kSVW3V9lChoBkdAY8s7JW/8EWgHTegDaAhHQJbwaTOgQH11fZQoaAZHQGLXRYJVsDZoB03oA2gIR0CW8sTOgQHzdX2UKGgGR0BigvLX+VC5aAdN6ANoCEdAlvoxNEgGKXV9lChoBkdAYZvb+tKZlWgHTegDaAhHQJcSScqe9SN1fZQoaAZHQGc7zguRLbpoB03oA2gIR0CXFh3PRiPRdX2UKGgGR0BmCf4oJAt4aAdN6ANoCEdAlxi9SZSeiHV9lChoBkfAcWt82rGR3mgHS4doCEdAlx2Cg9Net3V9lChoBkdAZZF8dgfEGmgHTegDaAhHQJcfuhdt2s91fZQoaAZHQGUO0Dlo11poB03oA2gIR0CXJXTnJT2ndX2UKGgGR0Bid0j3VTaTaAdN6ANoCEdAlyclvqC6H3V9lChoBkdAYXHdWQwK0GgHTegDaAhHQJcqtOk+HJt1fZQoaAZHQEBB+gDifg9oB0v6aAhHQJcr0DNhVlx1fZQoaAZHQHAjAK8cuJ1oB024AmgIR0CXLYvLX+VDdX2UKGgGR0BjmHlXA/LUaAdN6ANoCEdAly6aT0QK8nV9lChoBkdAY8BlhgE2YWgHTegDaAhHQJcx7B55Z8t1fZQoaAZHQGS58Vgx8D1oB03oA2gIR0CXMmMWoFV1dX2UKGgGR0BeRotDlYEGaAdN6ANoCEdAlzK4Xj2i+XV9lChoBkdAYu9Gx2SuAGgHTegDaAhHQJc4m7ZnL7p1fZQoaAZHQF3IdBSk0rNoB03oA2gIR0CXPqpRoAXEdX2UKGgGR0BNDIHkcS5BaAdL12gIR0CXPuzt1IRRdX2UKGgGR0Bhovnjhky2aAdN6ANoCEdAl0Kfe+Eh7nV9lChoBkdAcVYMzMzMzWgHTcABaAhHQJdIPACW/rV1fZQoaAZHQF+0thd+ocdoB03oA2gIR0CXS/wzLwF1dX2UKGgGR0BjamkUKzAvaAdN6ANoCEdAl17IwEhaDHV9lChoBkdAZ5DOwgTyrmgHTegDaAhHQJdlttXPqs51fZQoaAZHQFGL1uivgWJoB00LAWgIR0CXbKqBEroXdX2UKGgGR0Bn7JTyauwHaAdN6ANoCEdAl24KFEiMYXV9lChoBkdAYQktPHktE2gHTegDaAhHQJd1G4QSSNh1fZQoaAZHQGK5Dh99c8loB03oA2gIR0CXd6SM98qndX2UKGgGR0Bl1kk6cRUWaAdN6ANoCEdAl3ytZq20A3V9lChoBkdAY9NXrdFfA2gHTegDaAhHQJeA9+SbH6x1fZQoaAZHQGLAT6BRQ79oB03oA2gIR0CXgm8/lhgFdX2UKGgGR0BjNbj94u9OaAdN6ANoCEdAl4c/RE4NqnV9lChoBkdAXjjcJtzjm2gHTegDaAhHQJeHoExIre91fZQoaAZHQGWN1G9YfXBoB03oA2gIR0CXjjyzXz19dX2UKGgGR0BmFixgRbr1aAdN6ANoCEdAl5KlzZHuqnV9lChoBkdAZS/Qk5ZKWmgHTegDaAhHQJeS0jfNzKd1fZQoaAZHQEu/Hhjvuw5oB00kAWgIR0CXk3CCjDbbdX2UKGgGR0BoRbSiM5wPaAdN6ANoCEdAl5Vx+KCQLnV9lChoBkdAZw0YG+sYEWgHTegDaAhHQJeZWbwz+FV1fZQoaAZHQGP1C8nNPgxoB03oA2gIR0CXn0Ysd1dPdX2UKGgGR0BSjgYpDu0DaAdL6GgIR0CXsTBvrGBGdX2UKGgGR0AoZEuxrzoVaAdL8mgIR0CXttLq2SdOdX2UKGgGR0BoAGMKkVN6aAdN6ANoCEdAl7sIxgy/K3V9lChoBkdAZKV3vhIe5mgHTegDaAhHQJfFsdOqNqB1fZQoaAZHQF+/MI/qxC9oB03oA2gIR0CXx722G7BgdX2UKGgGR0BfuiUcGTs6aAdN6ANoCEdAl9AdwaR6nnV9lChoBkdAYaMtknTiKmgHTegDaAhHQJfR40sOG0x1fZQoaAZHQGPMefZmI0toB03oA2gIR0CX1UhGpda/dX2UKGgGR0Be0ASFoL5RaAdN6ANoCEdAl9gcl9jPOnV9lChoBkdAORZ7ojfNzWgHS/doCEdAl9hUJrtVrHV9lChoBkdAYtdLOAy2yGgHTegDaAhHQJfdCkVN5+p1fZQoaAZHQGTf8ohIOH5oB03oA2gIR0CX3WGgBcRldX2UKGgGR0BiCJ9uxbB5aAdN6ANoCEdAl+NCOFQEZHV9lChoBkdAZyb/3FkxymgHTegDaAhHQJfngLYwqRV1fZQoaAZHQGHPnKW9lEtoB03oA2gIR0CX6BXVLBbfdX2UKGgGR0Bj/vj4pMHsaAdN6ANoCEdAl+21U6xPf3V9lChoBkdAYl6pBHCoCWgHTegDaAhHQJf0qkgwGnp1fZQoaAZHQGBqMtkFwDNoB03oA2gIR0CX9bFGG21EdX2UKGgGR0BhTj+irT6SaAdN6ANoCEdAmAzGTLW7OHV9lChoBkdAZgNQ/HHWBmgHTegDaAhHQJgOvNdJJ5F1fZQoaAZHQF3ayaNMoMNoB03oA2gIR0CYFAW/ag27dX2UKGgGR0BjAR+x4Y78aAdN6ANoCEdAmBppNwiqyXV9lChoBkdAZputRvWH12gHTegDaAhHQJgcCKP4mC11fZQoaAZHQEz4kOZssQNoB0vIaAhHQJgeu21D0Dl1fZQoaAZHQGLAF2eQMhJoB03oA2gIR0CYH2Y8uBczdX2UKGgGR0BjFxllK9PDaAdN6ANoCEdAmCIwF9roGXV9lChoBkdAZuvRceKba2gHTegDaAhHQJgiaSSvC/J1fZQoaAZHQGeYfjKgZjxoB03oA2gIR0CYJxBj4HopdX2UKGgGR0BiZL5dnkDIaAdN6ANoCEdAmCdljVhCt3V9lChoBkdARc6dc0Ltu2gHS8BoCEdAmCi6JhvzfHV9lChoBkdAZ35FBIFvAGgHTegDaAhHQJgurnq3VkN1fZQoaAZHQGSw0aZQYUFoB03oA2gIR0CYNPv/zasZdX2UKGgGR0BmMW7cwg1WaAdN6ANoCEdAmDXenqFAV3V9lChoBkdAYRobkOqeb2gHTegDaAhHQJg93x3FDOV1fZQoaAZHQGdr8v24/eNoB03oA2gIR0CYQ/xRl6JJdX2UKGgGR0BeJh73PAwgaAdN6ANoCEdAmETWV/tpmHV9lChoBkdAZKXg6U7jk2gHTegDaAhHQJhYXwb2lEZ1fZQoaAZHQGSm8er+5vtoB03oA2gIR0CYWovcrRShdX2UKGgGR0By7RGe+VTraAdN5wFoCEdAmGPaEWZZ0XV9lChoBkdAY+SdilSCOGgHTegDaAhHQJhod7OVxCJ1fZQoaAZHQGZbCUX531VoB03oA2gIR0CYatDqnm7rdX2UKGgGR0BlPcawUxmDaAdN6ANoCEdAmG9jRD1GsnV9lChoBkdAZHd62OQyRGgHTegDaAhHQJhzU1jy4F11fZQoaAZHQGK1LE1l5GBoB03oA2gIR0CYc6FK02LpdX2UKGgGR0BlvCJoCdSVaAdN6ANoCEdAmHkCUcGTtHV9lChoBkdAYFGCGvfTC2gHTegDaAhHQJh5XLzPKMh1fZQoaAZHQGPW4uscQy1oB03oA2gIR0CYepp2ECeVdX2UKGgGR0Bn+MEaESM+aAdN6ANoCEdAmH7ltj0+T3V9lChoBkdAQfwphF3IMmgHS+toCEdAmH+pP69CeHV9lChoBkdAZvkXTmW+oWgHTegDaAhHQJiC5xdY4hl1fZQoaAZHQGJXAFHJ9y9oB03oA2gIR0CYiR4cFQl9dX2UKGgGR0Bdk3IuGsV+aAdN6ANoCEdAmI8WFzuF6HV9lChoBkdAY2PaFEiMYWgHTegDaAhHQJiP5UIcBEN1fZQoaAZHQFIivkzXSShoB0uraAhHQJiTPu8brC51fZQoaAZHQGcNt9hJAdJoB03oA2gIR0CYk2tWdVebdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |