miki030 commited on
Commit
cd96d93
·
1 Parent(s): 53aee2f

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 2137.70 +/- 402.57
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae00166823be6a13e8b5dca3f602bf3f2893b64a69099b728daf1525f3bae095
3
+ size 125196
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3c88f8d120>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3c88f8d1b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3c88f8d240>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3c88f8d2d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f3c88f8d360>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f3c88f8d3f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3c88f8d480>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3c88f8d510>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f3c88f8d5a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3c88f8d630>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3c88f8d6c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3c88f8d750>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f3c88f838c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
26
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
27
+ "optimizer_kwargs": {
28
+ "alpha": 0.99,
29
+ "eps": 1e-05,
30
+ "weight_decay": 0
31
+ }
32
+ },
33
+ "num_timesteps": 2000128,
34
+ "_total_timesteps": 2000000,
35
+ "_num_timesteps_at_start": 0,
36
+ "seed": null,
37
+ "action_noise": null,
38
+ "start_time": 1682763211647513090,
39
+ "learning_rate": 0.001,
40
+ "tensorboard_log": null,
41
+ "lr_schedule": {
42
+ ":type:": "<class 'function'>",
43
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
44
+ },
45
+ "_last_obs": {
46
+ ":type:": "<class 'numpy.ndarray'>",
47
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALIQ2j6MNJW+MZsnPqi5ZT+W74W+Uz4CwIgdxj+yKFo9VoCmP5hj7L6c2bM/81Riv6A7VL7w8+6/LyGkv4LBwD8ZAS6/Q/q9vg7puz4NQZI//d5oPu0qu7+ezcQ5K/LvPxVXHz9b15E+iPkYP5gFl78bjqk/5+6TvwJcob82yPc/FMKjvww2FT/aqAi+uFU5vnc1Bz9f45o/4BWhP9SJZT9GsNG+JRKhv1SpnL8QIMW/42mCvywjAb8yoK2/LP6VP37B0jtE7W+/i6qDv2oFxT4VVx8/W9eRPoj5GD+YBZe/StoaP/0Onr9sI7i/vGqtPxG4jb9L2dQ/5e7Iv6wjKb+mkQ2/8zATP9AC9T55ogg/Gay6Ojpvb70CbE8/JcuYPCdwhT4VNxHAZlbvvwb6UT5AEwE/8JVPvlTx/D+TFN49FVcfP1vXkT6I+Rg/mAWXv14krj+loYa/njeFv6XXvD+6oie/xrcPvxCZnr75GgG/iHhXP+Debj8l3J8/yyFdP4FMwb7F/jC/0V5Pv6kcW8BpDYW/Xc/3PjHnlL8k4us+NWQ7vizA2L4f0go+TzBSwBVXHz9b15E+iPkYP5gFl7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
48
+ },
49
+ "_last_episode_starts": {
50
+ ":type:": "<class 'numpy.ndarray'>",
51
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
52
+ },
53
+ "_last_original_obs": {
54
+ ":type:": "<class 'numpy.ndarray'>",
55
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAMpp22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACASNprvQAAAAC/Num/AAAAAK2wu70AAAAAAMHaPwAAAACjk/+9AAAAAH3u8j8AAAAA00dWPQAAAABpoOy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyg3RNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCCFyj0AAAAAnTrvvwAAAAD96Ue9AAAAANy56z8AAAAAQQzWPQAAAADpd/g/AAAAAMSZ8r0AAAAA3UDsvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANiIxTMAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID+C2O9AAAAAHYX8L8AAAAAbv0ZvQAAAADMOgBAAAAAAEY+e70AAAAAEcv6PwAAAAAADEa9AAAAAHSw3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhRjI0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAgJzAvQAAAAB/d+u/AAAAAMOKeT0AAAAACuX2PwAAAADHxm29AAAAALKe8T8AAAAAKoG4PQAAAAByD/G/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
56
+ },
57
+ "_episode_num": 0,
58
+ "use_sde": false,
59
+ "sde_sample_freq": -1,
60
+ "_current_progress_remaining": -6.4000000000064e-05,
61
+ "_stats_window_size": 100,
62
+ "ep_info_buffer": {
63
+ ":type:": "<class 'collections.deque'>",
64
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ5JMxVQyh2MAWyUTegDjAF0lEdAr85K3w1BMXV9lChoBkdAn2EUZ3s5XGgHTegDaAhHQK/QMfnwG4Z1fZQoaAZHQJ6q8bkwN9ZoB03oA2gIR0Cv1qGbb1yvdX2UKGgGR0Ceaaqd6LOzaAdN6ANoCEdAr9eevB7/oHV9lChoBkdAoB9DGPxQSGgHTegDaAhHQK/dIgDifg91fZQoaAZHQJ/aA3l0YCRoB03oA2gIR0Cv3pe7Dl5odX2UKGgGR0CfYjCLMs6JaAdN6ANoCEdAr+L2APNFB3V9lChoBkdAnUiIBeXzDmgHTegDaAhHQK/jmwIt16p1fZQoaAZHQJ9VA1EVnEloB03oA2gIR0Cv6HaPS2H+dX2UKGgGR0Cd0MZQpF1CaAdN6ANoCEdAr+noEnssx3V9lChoBkdAnu8CP2f03GgHTegDaAhHQK/ufswco6V1fZQoaAZHQJ7bPmeUY9BoB03oA2gIR0Cv721h1DBudX2UKGgGR0CfnIGIbfgraAdN6ANoCEdAr/cZR/EwWXV9lChoBkdAnq7lJ17pmmgHTegDaAhHQK/40zu4PPN1fZQoaAZHQJ2EQy31BdFoB03oA2gIR0Cv/TnlOoHcdX2UKGgGR0Cgbqj+R5kcaAdN6ANoCEdAr/3bMJQcgnV9lChoBkdAnBmJB5X2d2gHTegDaAhHQLABapXIU8F1fZQoaAZHQJ4BVZ7ojfNoB03oA2gIR0CwAilUhmoSdX2UKGgGR0CZzgZ9/jKgaAdN6ANoCEdAsARQNutOmHV9lChoBkdAnyzM2eg+QmgHTegDaAhHQLAEn5eJHiF1fZQoaAZHQJ7581k1/DtoB03oA2gIR0CwB54UN8VpdX2UKGgGR0CgCF30oSctaAdN6ANoCEdAsAi5V4oqkXV9lChoBkdAoFwy3/givGgHTegDaAhHQLALwMvRJEp1fZQoaAZHQJ7vmMS9M9NoB03oA2gIR0CwDBOymhugdX2UKGgGR0Ce4GcJMQEqaAdN6ANoCEdAsA6RHc1wYXV9lChoBkdAnglqpT/ACWgHTegDaAhHQLAPSpkPMB91fZQoaAZHQJvtewLVnVZoB03oA2gIR0CwEXKkEcKgdX2UKGgGR0CgT/BrnDBNaAdN6ANoCEdAsBHIgHNX5nV9lChoBkdAntKe3c580GgHTegDaAhHQLAUOtoBaLZ1fZQoaAZHQJqRszk6tDFoB03oA2gIR0CwFPZOi35OdX2UKGgGR0Cdf/8Empl0aAdN6ANoCEdAsBgW/etSynV9lChoBkdAn7vw66reZWgHTegDaAhHQLAYmu4wyqN1fZQoaAZHQJ/7Z+EytV9oB03oA2gIR0CwG7SvX9R8dX2UKGgGR0Cf+01fE4vOaAdN6ANoCEdAsBxuJGe+VXV9lChoBkdAn1sgKjSG8GgHTegDaAhHQLAejLTx5LR1fZQoaAZHQJ/T4k3S8apoB03oA2gIR0CwHtt9Ujs2dX2UKGgGR0CgaQejVQQ+aAdN6ANoCEdAsCFRb2USqXV9lChoBkdAn8cCwOe8PGgHTegDaAhHQLAiDOx0MgF1fZQoaAZHQKBTzavA44poB03oA2gIR0CwJDeJLuhLdX2UKGgGR0CgeVVW8yvcaAdN6ANoCEdAsCSZeNT99HV9lChoBkdAoOo05Qxes2gHTegDaAhHQLAoUrNnoPl1fZQoaAZHQKB9iywfQrtoB03oA2gIR0CwKXdHtnf3dX2UKGgGR0CeyJrsjVx0aAdN6ANoCEdAsCus5ksjFHV9lChoBkdAoH6XnnuAqmgHTegDaAhHQLAr/HbAUL51fZQoaAZHQKDGeVhTfixoB03oA2gIR0CwLnDCxeLOdX2UKGgGR0CgLP8ghbGFaAdN6ANoCEdAsC8o052hZnV9lChoBkdAoNo7lA/s3WgHTegDaAhHQLAxRG7SRbN1fZQoaAZHQKAj7XFtKqZoB03oA2gIR0CwMZieVcD9dX2UKGgGR0Cgsxl+Vkc0aAdN6ANoCEdAsDQ3AwfyPXV9lChoBkdAoBkL06HTJGgHTegDaAhHQLA1S9RaX8h1fZQoaAZHQKDwj5ftx+9oB03oA2gIR0CwOK5H/cWTdX2UKGgGR0CgcI7vG6wuaAdN6ANoCEdAsDkWNaQmu3V9lChoBkdAoCKa35N47mgHTegDaAhHQLA7hxuKoAJ1fZQoaAZHQJ/bhhmXgLtoB03oA2gIR0CwPD5DZ13ddX2UKGgGR0Cg8DwuM+/yaAdN6ANoCEdAsD5eKhtcfXV9lChoBkdAn0BvHxSYPWgHTegDaAhHQLA+rROk+HJ1fZQoaAZHQKBAr0GNaQpoB03oA2gIR0CwQSGh24d7dX2UKGgGR0CgiJ5nDiwTaAdN6ANoCEdAsEHfIOpbU3V9lChoBkdAoFofeDWbw2gHTegDaAhHQLBEeKKHfuV1fZQoaAZHQKCcSAQQL/loB03oA2gIR0CwRPObExZddX2UKGgGR0CgZO15Sm65aAdN6ANoCEdAsEiW2RaHK3V9lChoBkdAoD0eC5EtumgHTegDaAhHQLBJT6LwWnF1fZQoaAZHQKBHJiFTNt9oB03oA2gIR0CwS3cAJb+tdX2UKGgGR0CgWVK94/u9aAdN6ANoCEdAsEvJpJwsG3V9lChoBkdAoDrZUipvP2gHTegDaAhHQLBOOnpB5X51fZQoaAZHQKDUIsDnvDxoB03oA2gIR0CwTvKTKT0QdX2UKGgGR0Cb8SB4lhPTaAdN6ANoCEdAsFEQhgVoH3V9lChoBkdAnRWAqAjIJmgHTegDaAhHQLBRYw8nuzB1fZQoaAZHQJi6OaDwpfBoB03oA2gIR0CwVLOzUqhEdX2UKGgGR0CcQy4rSVnmaAdN6ANoCEdAsFXo2eg+QnV9lChoBkdAntNWPxQSBmgHTegDaAhHQLBYsdrftQd1fZQoaAZHQJ1TtLnLaEloB03oA2gIR0CwWQV2aDwpdX2UKGgGR0CcGs5MDfWMaAdN6ANoCEdAsFuMB7u2JHV9lChoBkdAg0JGNBF/hGgHTegDaAhHQLBcR0Jng511fZQoaAZHQJ6FYgq3EydoB03oA2gIR0CwXn867ulXdX2UKGgGR0CepftsN2C/aAdN6ANoCEdAsF7O4qgAZXV9lChoBkdAn8QTQRf4RGgHTegDaAhHQLBhRRcu8K51fZQoaAZHQJ8CtQ2uPmxoB03oA2gIR0CwYjWjKxLTdX2UKGgGR0CgS9O6unuRaAdN6ANoCEdAsGVy7PIGQnV9lChoBkdAoA9xJiAlOWgHTegDaAhHQLBl9n0kGA11fZQoaAZHQJsfyiVSn+BoB03oA2gIR0CwaLo+KTB7dX2UKGgGR0CciWW69TP0aAdN6ANoCEdAsGl4+hXbNHV9lChoBkdAnSYv642CNGgHTegDaAhHQLBroV6/qPh1fZQoaAZHQJ+V2FN+LFZoB03oA2gIR0Cwa/IigTRIdX2UKGgGR0CfAfYq5LAYaAdN6ANoCEdAsG5bPRiPQ3V9lChoBkdAn0NY+bExZmgHTegDaAhHQLBvEMlC1JF1fZQoaAZHQJx/ziJfplloB03oA2gIR0CwcWnw9aEBdX2UKGgGR0CgHbMXaakRaAdN6ANoCEdAsHHi/qPfbnV9lChoBkdAn+72/etSymgHTegDaAhHQLB1tP8Q7Ld1fZQoaAZHQJ/NaiRGMGZoB03oA2gIR0Cwdon62v0RdX2UKGgGR0CgQONUfgaWaAdN6ANoCEdAsHi0aP0ZnHV9lChoBkdAnwSK5CngpGgHTegDaAhHQLB5AfV7QcB1fZQoaAZHQJ90zX18LKFoB03oA2gIR0Cwe27gTAWSdX2UKGgGR0CguL44Qz1saAdN6ANoCEdAsHwnz8P4EnV9lChoBkdAoSaqnm7rcGgHTegDaAhHQLB+ViN83Mp1fZQoaAZHQJzxbFLnLaFoB03oA2gIR0Cwfqb2L5ymdX2UKGgGR0CgdOIxxkupaAdN6ANoCEdAsIGrtZ3cHnV9lChoBkdAoCRUCq6vq2gHTegDaAhHQLCCwuWrwOR1fZQoaAZHQKEPxuUD+zdoB03oA2gIR0Cwhcybc45tdX2UKGgGR0CfQ9/Ue+23aAdN6ANoCEdAsIYZYbKif3VlLg=="
65
+ },
66
+ "ep_success_buffer": {
67
+ ":type:": "<class 'collections.deque'>",
68
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
69
+ },
70
+ "_n_updates": 7813,
71
+ "n_steps": 64,
72
+ "gamma": 0.995,
73
+ "gae_lambda": 1.0,
74
+ "ent_coef": 0.0,
75
+ "vf_coef": 0.5,
76
+ "max_grad_norm": 0.5,
77
+ "normalize_advantage": false,
78
+ "observation_space": {
79
+ ":type:": "<class 'gym.spaces.box.Box'>",
80
+ ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
81
+ "dtype": "float32",
82
+ "_shape": [
83
+ 28
84
+ ],
85
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
86
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
87
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
88
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
89
+ "_np_random": null
90
+ },
91
+ "action_space": {
92
+ ":type:": "<class 'gym.spaces.box.Box'>",
93
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
94
+ "dtype": "float32",
95
+ "_shape": [
96
+ 8
97
+ ],
98
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
99
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
100
+ "bounded_below": "[ True True True True True True True True]",
101
+ "bounded_above": "[ True True True True True True True True]",
102
+ "_np_random": null
103
+ },
104
+ "n_envs": 4
105
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64622a074f9b7fd6de9034b14881e5512266a625ca682d6d110c5b5731d10d78
3
+ size 54206
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:714317c6226d07984365637713b36061228a7ba0a4d8652800e3ce6899245b3b
3
+ size 54910
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3c88f8d120>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3c88f8d1b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3c88f8d240>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3c88f8d2d0>", "_build": "<function ActorCriticPolicy._build at 0x7f3c88f8d360>", "forward": "<function ActorCriticPolicy.forward at 0x7f3c88f8d3f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3c88f8d480>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3c88f8d510>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3c88f8d5a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3c88f8d630>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3c88f8d6c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3c88f8d750>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3c88f838c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000128, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682763211647513090, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALIQ2j6MNJW+MZsnPqi5ZT+W74W+Uz4CwIgdxj+yKFo9VoCmP5hj7L6c2bM/81Riv6A7VL7w8+6/LyGkv4LBwD8ZAS6/Q/q9vg7puz4NQZI//d5oPu0qu7+ezcQ5K/LvPxVXHz9b15E+iPkYP5gFl78bjqk/5+6TvwJcob82yPc/FMKjvww2FT/aqAi+uFU5vnc1Bz9f45o/4BWhP9SJZT9GsNG+JRKhv1SpnL8QIMW/42mCvywjAb8yoK2/LP6VP37B0jtE7W+/i6qDv2oFxT4VVx8/W9eRPoj5GD+YBZe/StoaP/0Onr9sI7i/vGqtPxG4jb9L2dQ/5e7Iv6wjKb+mkQ2/8zATP9AC9T55ogg/Gay6Ojpvb70CbE8/JcuYPCdwhT4VNxHAZlbvvwb6UT5AEwE/8JVPvlTx/D+TFN49FVcfP1vXkT6I+Rg/mAWXv14krj+loYa/njeFv6XXvD+6oie/xrcPvxCZnr75GgG/iHhXP+Debj8l3J8/yyFdP4FMwb7F/jC/0V5Pv6kcW8BpDYW/Xc/3PjHnlL8k4us+NWQ7vizA2L4f0go+TzBSwBVXHz9b15E+iPkYP5gFl7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAMpp22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACASNprvQAAAAC/Num/AAAAAK2wu70AAAAAAMHaPwAAAACjk/+9AAAAAH3u8j8AAAAA00dWPQAAAABpoOy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyg3RNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCCFyj0AAAAAnTrvvwAAAAD96Ue9AAAAANy56z8AAAAAQQzWPQAAAADpd/g/AAAAAMSZ8r0AAAAA3UDsvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANiIxTMAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID+C2O9AAAAAHYX8L8AAAAAbv0ZvQAAAADMOgBAAAAAAEY+e70AAAAAEcv6PwAAAAAADEa9AAAAAHSw3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhRjI0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAgJzAvQAAAAB/d+u/AAAAAMOKeT0AAAAACuX2PwAAAADHxm29AAAAALKe8T8AAAAAKoG4PQAAAAByD/G/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -6.4000000000064e-05, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ5JMxVQyh2MAWyUTegDjAF0lEdAr85K3w1BMXV9lChoBkdAn2EUZ3s5XGgHTegDaAhHQK/QMfnwG4Z1fZQoaAZHQJ6q8bkwN9ZoB03oA2gIR0Cv1qGbb1yvdX2UKGgGR0Ceaaqd6LOzaAdN6ANoCEdAr9eevB7/oHV9lChoBkdAoB9DGPxQSGgHTegDaAhHQK/dIgDifg91fZQoaAZHQJ/aA3l0YCRoB03oA2gIR0Cv3pe7Dl5odX2UKGgGR0CfYjCLMs6JaAdN6ANoCEdAr+L2APNFB3V9lChoBkdAnUiIBeXzDmgHTegDaAhHQK/jmwIt16p1fZQoaAZHQJ9VA1EVnEloB03oA2gIR0Cv6HaPS2H+dX2UKGgGR0Cd0MZQpF1CaAdN6ANoCEdAr+noEnssx3V9lChoBkdAnu8CP2f03GgHTegDaAhHQK/ufswco6V1fZQoaAZHQJ7bPmeUY9BoB03oA2gIR0Cv721h1DBudX2UKGgGR0CfnIGIbfgraAdN6ANoCEdAr/cZR/EwWXV9lChoBkdAnq7lJ17pmmgHTegDaAhHQK/40zu4PPN1fZQoaAZHQJ2EQy31BdFoB03oA2gIR0Cv/TnlOoHcdX2UKGgGR0Cgbqj+R5kcaAdN6ANoCEdAr/3bMJQcgnV9lChoBkdAnBmJB5X2d2gHTegDaAhHQLABapXIU8F1fZQoaAZHQJ4BVZ7ojfNoB03oA2gIR0CwAilUhmoSdX2UKGgGR0CZzgZ9/jKgaAdN6ANoCEdAsARQNutOmHV9lChoBkdAnyzM2eg+QmgHTegDaAhHQLAEn5eJHiF1fZQoaAZHQJ7581k1/DtoB03oA2gIR0CwB54UN8VpdX2UKGgGR0CgCF30oSctaAdN6ANoCEdAsAi5V4oqkXV9lChoBkdAoFwy3/givGgHTegDaAhHQLALwMvRJEp1fZQoaAZHQJ7vmMS9M9NoB03oA2gIR0CwDBOymhugdX2UKGgGR0Ce4GcJMQEqaAdN6ANoCEdAsA6RHc1wYXV9lChoBkdAnglqpT/ACWgHTegDaAhHQLAPSpkPMB91fZQoaAZHQJvtewLVnVZoB03oA2gIR0CwEXKkEcKgdX2UKGgGR0CgT/BrnDBNaAdN6ANoCEdAsBHIgHNX5nV9lChoBkdAntKe3c580GgHTegDaAhHQLAUOtoBaLZ1fZQoaAZHQJqRszk6tDFoB03oA2gIR0CwFPZOi35OdX2UKGgGR0Cdf/8Empl0aAdN6ANoCEdAsBgW/etSynV9lChoBkdAn7vw66reZWgHTegDaAhHQLAYmu4wyqN1fZQoaAZHQJ/7Z+EytV9oB03oA2gIR0CwG7SvX9R8dX2UKGgGR0Cf+01fE4vOaAdN6ANoCEdAsBxuJGe+VXV9lChoBkdAn1sgKjSG8GgHTegDaAhHQLAejLTx5LR1fZQoaAZHQJ/T4k3S8apoB03oA2gIR0CwHtt9Ujs2dX2UKGgGR0CgaQejVQQ+aAdN6ANoCEdAsCFRb2USqXV9lChoBkdAn8cCwOe8PGgHTegDaAhHQLAiDOx0MgF1fZQoaAZHQKBTzavA44poB03oA2gIR0CwJDeJLuhLdX2UKGgGR0CgeVVW8yvcaAdN6ANoCEdAsCSZeNT99HV9lChoBkdAoOo05Qxes2gHTegDaAhHQLAoUrNnoPl1fZQoaAZHQKB9iywfQrtoB03oA2gIR0CwKXdHtnf3dX2UKGgGR0CeyJrsjVx0aAdN6ANoCEdAsCus5ksjFHV9lChoBkdAoH6XnnuAqmgHTegDaAhHQLAr/HbAUL51fZQoaAZHQKDGeVhTfixoB03oA2gIR0CwLnDCxeLOdX2UKGgGR0CgLP8ghbGFaAdN6ANoCEdAsC8o052hZnV9lChoBkdAoNo7lA/s3WgHTegDaAhHQLAxRG7SRbN1fZQoaAZHQKAj7XFtKqZoB03oA2gIR0CwMZieVcD9dX2UKGgGR0Cgsxl+Vkc0aAdN6ANoCEdAsDQ3AwfyPXV9lChoBkdAoBkL06HTJGgHTegDaAhHQLA1S9RaX8h1fZQoaAZHQKDwj5ftx+9oB03oA2gIR0CwOK5H/cWTdX2UKGgGR0CgcI7vG6wuaAdN6ANoCEdAsDkWNaQmu3V9lChoBkdAoCKa35N47mgHTegDaAhHQLA7hxuKoAJ1fZQoaAZHQJ/bhhmXgLtoB03oA2gIR0CwPD5DZ13ddX2UKGgGR0Cg8DwuM+/yaAdN6ANoCEdAsD5eKhtcfXV9lChoBkdAn0BvHxSYPWgHTegDaAhHQLA+rROk+HJ1fZQoaAZHQKBAr0GNaQpoB03oA2gIR0CwQSGh24d7dX2UKGgGR0CgiJ5nDiwTaAdN6ANoCEdAsEHfIOpbU3V9lChoBkdAoFofeDWbw2gHTegDaAhHQLBEeKKHfuV1fZQoaAZHQKCcSAQQL/loB03oA2gIR0CwRPObExZddX2UKGgGR0CgZO15Sm65aAdN6ANoCEdAsEiW2RaHK3V9lChoBkdAoD0eC5EtumgHTegDaAhHQLBJT6LwWnF1fZQoaAZHQKBHJiFTNt9oB03oA2gIR0CwS3cAJb+tdX2UKGgGR0CgWVK94/u9aAdN6ANoCEdAsEvJpJwsG3V9lChoBkdAoDrZUipvP2gHTegDaAhHQLBOOnpB5X51fZQoaAZHQKDUIsDnvDxoB03oA2gIR0CwTvKTKT0QdX2UKGgGR0Cb8SB4lhPTaAdN6ANoCEdAsFEQhgVoH3V9lChoBkdAnRWAqAjIJmgHTegDaAhHQLBRYw8nuzB1fZQoaAZHQJi6OaDwpfBoB03oA2gIR0CwVLOzUqhEdX2UKGgGR0CcQy4rSVnmaAdN6ANoCEdAsFXo2eg+QnV9lChoBkdAntNWPxQSBmgHTegDaAhHQLBYsdrftQd1fZQoaAZHQJ1TtLnLaEloB03oA2gIR0CwWQV2aDwpdX2UKGgGR0CcGs5MDfWMaAdN6ANoCEdAsFuMB7u2JHV9lChoBkdAg0JGNBF/hGgHTegDaAhHQLBcR0Jng511fZQoaAZHQJ6FYgq3EydoB03oA2gIR0CwXn867ulXdX2UKGgGR0CepftsN2C/aAdN6ANoCEdAsF7O4qgAZXV9lChoBkdAn8QTQRf4RGgHTegDaAhHQLBhRRcu8K51fZQoaAZHQJ8CtQ2uPmxoB03oA2gIR0CwYjWjKxLTdX2UKGgGR0CgS9O6unuRaAdN6ANoCEdAsGVy7PIGQnV9lChoBkdAoA9xJiAlOWgHTegDaAhHQLBl9n0kGA11fZQoaAZHQJsfyiVSn+BoB03oA2gIR0CwaLo+KTB7dX2UKGgGR0CciWW69TP0aAdN6ANoCEdAsGl4+hXbNHV9lChoBkdAnSYv642CNGgHTegDaAhHQLBroV6/qPh1fZQoaAZHQJ+V2FN+LFZoB03oA2gIR0Cwa/IigTRIdX2UKGgGR0CfAfYq5LAYaAdN6ANoCEdAsG5bPRiPQ3V9lChoBkdAn0NY+bExZmgHTegDaAhHQLBvEMlC1JF1fZQoaAZHQJx/ziJfplloB03oA2gIR0CwcWnw9aEBdX2UKGgGR0CgHbMXaakRaAdN6ANoCEdAsHHi/qPfbnV9lChoBkdAn+72/etSymgHTegDaAhHQLB1tP8Q7Ld1fZQoaAZHQJ/NaiRGMGZoB03oA2gIR0Cwdon62v0RdX2UKGgGR0CgQONUfgaWaAdN6ANoCEdAsHi0aP0ZnHV9lChoBkdAnwSK5CngpGgHTegDaAhHQLB5AfV7QcB1fZQoaAZHQJ90zX18LKFoB03oA2gIR0Cwe27gTAWSdX2UKGgGR0CguL44Qz1saAdN6ANoCEdAsHwnz8P4EnV9lChoBkdAoSaqnm7rcGgHTegDaAhHQLB+ViN83Mp1fZQoaAZHQJzxbFLnLaFoB03oA2gIR0Cwfqb2L5ymdX2UKGgGR0CgdOIxxkupaAdN6ANoCEdAsIGrtZ3cHnV9lChoBkdAoCRUCq6vq2gHTegDaAhHQLCCwuWrwOR1fZQoaAZHQKEPxuUD+zdoB03oA2gIR0Cwhcybc45tdX2UKGgGR0CfQ9/Ue+23aAdN6ANoCEdAsIYZYbKif3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 7813, "n_steps": 64, "gamma": 0.995, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ea2cac73e285081ceec007fbb62bfd2f36bdfcb136f99cd91b4024bec41058d
3
+ size 1217720
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 2137.6958873292433, "std_reward": 402.5651902181559, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-29T12:07:26.124603"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40ad9f22985d63214258bbfbd0954f93e87fbd392ca06d30f9442ab372bead15
3
+ size 2176