Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.98 +/- 0.59
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e97ac9c4e6d477235ea31b974b71a565f14befb7acac99da6b61734078213a32
|
3 |
+
size 108075
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fed3dcd2050>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fed3dccea00>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1683271349777742511,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAACaPNPkDfiLwbwRE/CaPNPkDfiLwbwRE/CaPNPkDfiLwbwRE/CaPNPkDfiLwbwRE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAqg7hPbsPRL6okxG//7oPPpFJhD8/dN2/QxAHP7IFbj94l7O/Q3/uvpG02j/yX46/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAJo80+QN+IvBvBET/lhca7ZRSVuqe6D7sJo80+QN+IvBvBET/lhca7ZRSVuqe6D7sJo80+QN+IvBvBET/lhca7ZRSVuqe6D7sJo80+QN+IvBvBET/lhca7ZRSVuqe6D7uUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.40163448 -0.01670802 0.5693528 ]\n [ 0.40163448 -0.01670802 0.5693528 ]\n [ 0.40163448 -0.01670802 0.5693528 ]\n [ 0.40163448 -0.01670802 0.5693528 ]]",
|
38 |
+
"desired_goal": "[[ 0.10989125 -0.19146626 -0.5686593 ]\n [ 0.14036177 1.0334951 -1.73011 ]\n [ 0.5275919 0.9297744 -1.40306 ]\n [-0.46581468 1.7086354 -1.112303 ]]",
|
39 |
+
"observation": "[[ 0.40163448 -0.01670802 0.5693528 -0.00605844 -0.00113739 -0.00219313]\n [ 0.40163448 -0.01670802 0.5693528 -0.00605844 -0.00113739 -0.00219313]\n [ 0.40163448 -0.01670802 0.5693528 -0.00605844 -0.00113739 -0.00219313]\n [ 0.40163448 -0.01670802 0.5693528 -0.00605844 -0.00113739 -0.00219313]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8oGcPZ8TDT5u5cE7yqIRvR9SCT6UW5A9Y/mivRv87r1gm6I9WTCNPeYEwby3wm4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.07641973 0.13777016 0.00591724]\n [-0.03555564 0.13410233 0.07048717]\n [-0.07957723 -0.11669179 0.07939792]\n [ 0.06893987 -0.02356191 0.23316465]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOE4K8x5n+r+UhpRSlIwBbJRLMowBdJRHQKYJMLb5/LF1fZQoaAZoCWgPQwg9SE+RQ0T2v5SGlFKUaBVLMmgWR0CmCPVxjriVdX2UKGgGaAloD0MIN6W8VkJ3AsCUhpRSlGgVSzJoFkdApgi4pz90inV9lChoBmgJaA9DCCf5Eb9iTQrAlIaUUpRoFUsyaBZHQKYIfKlpGnZ1fZQoaAZoCWgPQwg2dLM/UO77v5SGlFKUaBVLMmgWR0CmCh8Hv+fidX2UKGgGaAloD0MIjXxe8dSj97+UhpRSlGgVSzJoFkdApgnjjR2KVXV9lChoBmgJaA9DCJBOXfksT/e/lIaUUpRoFUsyaBZHQKYJprC3w1B1fZQoaAZoCWgPQwia7Qp9sMz1v5SGlFKUaBVLMmgWR0CmCWrIPsiTdX2UKGgGaAloD0MIJbA5B89EBMCUhpRSlGgVSzJoFkdApgsTUAksz3V9lChoBmgJaA9DCMpskElGDvq/lIaUUpRoFUsyaBZHQKYK2AbyYol1fZQoaAZoCWgPQwhw6ZjzjH0JwJSGlFKUaBVLMmgWR0CmCps8PnSwdX2UKGgGaAloD0MI8L4qFyo/BMCUhpRSlGgVSzJoFkdApgpfWattAXV9lChoBmgJaA9DCJVJDW0AdgnAlIaUUpRoFUsyaBZHQKYL/1wo9cN1fZQoaAZoCWgPQwiZKhiV1MkDwJSGlFKUaBVLMmgWR0CmC8QgDA8CdX2UKGgGaAloD0MITS8xlumXBMCUhpRSlGgVSzJoFkdApguHY+Sr53V9lChoBmgJaA9DCOIDO/4LJADAlIaUUpRoFUsyaBZHQKYLS4z7/GV1fZQoaAZoCWgPQwjVWpiFdq4JwJSGlFKUaBVLMmgWR0CmDOqpT/ACdX2UKGgGaAloD0MIuqEpO/0gC8CUhpRSlGgVSzJoFkdApgyvWUbDM3V9lChoBmgJaA9DCOmY84x9CQjAlIaUUpRoFUsyaBZHQKYMcpzcRDl1fZQoaAZoCWgPQwgj2Lj+Xd8CwJSGlFKUaBVLMmgWR0CmDDajFhoedX2UKGgGaAloD0MI/YSzW8sECcCUhpRSlGgVSzJoFkdApg3egi/wiXV9lChoBmgJaA9DCAqBXOLIg/m/lIaUUpRoFUsyaBZHQKYNo3cYZVJ1fZQoaAZoCWgPQwjXMhmO5xMGwJSGlFKUaBVLMmgWR0CmDWatknTidX2UKGgGaAloD0MIcZAQ5QvaB8CUhpRSlGgVSzJoFkdApg0qwfQrtnV9lChoBmgJaA9DCMTMPo9R3gDAlIaUUpRoFUsyaBZHQKYOz0VafSR1fZQoaAZoCWgPQwgwoBfuXBj/v5SGlFKUaBVLMmgWR0CmDpQNsnAqdX2UKGgGaAloD0MIt5ifG5oSAcCUhpRSlGgVSzJoFkdApg5XPE87p3V9lChoBmgJaA9DCKDdIcUASQDAlIaUUpRoFUsyaBZHQKYOG2/BWPt1fZQoaAZoCWgPQwgEG9e/6zP2v5SGlFKUaBVLMmgWR0CmD73ta6jGdX2UKGgGaAloD0MItg4O9iamAcCUhpRSlGgVSzJoFkdApg+CuEEkjXV9lChoBmgJaA9DCNds5SX/U/6/lIaUUpRoFUsyaBZHQKYPRhc7heh1fZQoaAZoCWgPQwjW5v9VR877v5SGlFKUaBVLMmgWR0CmDwoYekpJdX2UKGgGaAloD0MIh07Pu7Hg/b+UhpRSlGgVSzJoFkdAphDRccENfHV9lChoBmgJaA9DCKSIDKt4owDAlIaUUpRoFUsyaBZHQKYQljR2KVJ1fZQoaAZoCWgPQwgi4Xt/g3YKwJSGlFKUaBVLMmgWR0CmEFmPgeijdX2UKGgGaAloD0MI+ptQiICjAsCUhpRSlGgVSzJoFkdAphAd2s7uD3V9lChoBmgJaA9DCKuWdJSDGQbAlIaUUpRoFUsyaBZHQKYRzR4yGi51fZQoaAZoCWgPQwgjMqzijawGwJSGlFKUaBVLMmgWR0CmEZH7P6bfdX2UKGgGaAloD0MIbtqM0xBVAcCUhpRSlGgVSzJoFkdAphFVMh5gPXV9lChoBmgJaA9DCAA49uy5DAbAlIaUUpRoFUsyaBZHQKYRGXokiUx1fZQoaAZoCWgPQwjMJsCw/PkEwJSGlFKUaBVLMmgWR0CmEscXFcY7dX2UKGgGaAloD0MI6/6xEB2CA8CUhpRSlGgVSzJoFkdAphKL39JjD3V9lChoBmgJaA9DCP9cNGQ86gfAlIaUUpRoFUsyaBZHQKYSTwy6+WZ1fZQoaAZoCWgPQwjTLTvEP6z4v5SGlFKUaBVLMmgWR0CmEhM/yGzsdX2UKGgGaAloD0MIO/w1WaMeBMCUhpRSlGgVSzJoFkdAphPK2DxsmHV9lChoBmgJaA9DCKSMuAA0agfAlIaUUpRoFUsyaBZHQKYTj7w8W9F1fZQoaAZoCWgPQwjuIeF7f8P5v5SGlFKUaBVLMmgWR0CmE1MKLKmsdX2UKGgGaAloD0MIi1BsBU0L9L+UhpRSlGgVSzJoFkdAphMXKuB+WnV9lChoBmgJaA9DCIXMlUG1Afa/lIaUUpRoFUsyaBZHQKYUz4t6HCZ1fZQoaAZoCWgPQwioj8Affv74v5SGlFKUaBVLMmgWR0CmFJQ2/BWQdX2UKGgGaAloD0MIlQ1rKosC9r+UhpRSlGgVSzJoFkdAphRXgP3BYXV9lChoBmgJaA9DCJyGqMKfgQnAlIaUUpRoFUsyaBZHQKYUG5c1O0t1fZQoaAZoCWgPQwh81F+vsIABwJSGlFKUaBVLMmgWR0CmFeMfA9FGdX2UKGgGaAloD0MISwLU1LL1+L+UhpRSlGgVSzJoFkdAphWoqy4WlHV9lChoBmgJaA9DCK7yBMJO8fq/lIaUUpRoFUsyaBZHQKYVbI0ZWJd1fZQoaAZoCWgPQwh+chQgCoYFwJSGlFKUaBVLMmgWR0CmFTGTcIqtdX2UKGgGaAloD0MIT5FDxM0JAcCUhpRSlGgVSzJoFkdAphd2JgsshHV9lChoBmgJaA9DCLdDw2LUNfq/lIaUUpRoFUsyaBZHQKYXO3eenQ91fZQoaAZoCWgPQwird7gdGlYDwJSGlFKUaBVLMmgWR0CmFv85jpcHdX2UKGgGaAloD0MIBJKwbycR/r+UhpRSlGgVSzJoFkdAphbD8k2P1nV9lChoBmgJaA9DCGl0B7Ezhfm/lIaUUpRoFUsyaBZHQKYZDfE4vOB1fZQoaAZoCWgPQwiw4lRrYfYCwJSGlFKUaBVLMmgWR0CmGNNqYZ2qdX2UKGgGaAloD0MIxJj091JYAcCUhpRSlGgVSzJoFkdAphiXZsbednV9lChoBmgJaA9DCMKk+PiE7Py/lIaUUpRoFUsyaBZHQKYYXGax5cF1fZQoaAZoCWgPQwicw7Xaw54JwJSGlFKUaBVLMmgWR0CmGprg4wRHdX2UKGgGaAloD0MIHZJaKJm8AcCUhpRSlGgVSzJoFkdAphpgZflZHXV9lChoBmgJaA9DCBToE3mS9P2/lIaUUpRoFUsyaBZHQKYaJG4qgAZ1fZQoaAZoCWgPQwjL9baZCjEAwJSGlFKUaBVLMmgWR0CmGel/x2B8dX2UKGgGaAloD0MIaLJ/ngbMA8CUhpRSlGgVSzJoFkdAphw1kWhysHV9lChoBmgJaA9DCKinj8Afvve/lIaUUpRoFUsyaBZHQKYb+0Xxe9l1fZQoaAZoCWgPQwgQdR+A1Ob+v5SGlFKUaBVLMmgWR0CmG78XenAJdX2UKGgGaAloD0MIhXr6CPzh+7+UhpRSlGgVSzJoFkdAphuEHnlny3V9lChoBmgJaA9DCOfgmdAksQLAlIaUUpRoFUsyaBZHQKYd2obXHzZ1fZQoaAZoCWgPQwj/WIgOgeP5v5SGlFKUaBVLMmgWR0CmHaBHCoCNdX2UKGgGaAloD0MIAAAAAABA/b+UhpRSlGgVSzJoFkdAph1kTSLIgnV9lChoBmgJaA9DCCgLX1/rkvq/lIaUUpRoFUsyaBZHQKYdKVHnU2F1fZQoaAZoCWgPQwhmMEYkCu0BwJSGlFKUaBVLMmgWR0CmH3HKwIMSdX2UKGgGaAloD0MI6NhBJa6DAsCUhpRSlGgVSzJoFkdAph83JzT4L3V9lChoBmgJaA9DCMx+3enOswfAlIaUUpRoFUsyaBZHQKYe+0b961N1fZQoaAZoCWgPQwhCCTNt/+oCwJSGlFKUaBVLMmgWR0CmHr/zJ6ppdX2UKGgGaAloD0MIndfYJar3/r+UhpRSlGgVSzJoFkdApiCbZnL7oHV9lChoBmgJaA9DCH8UdeYeEgnAlIaUUpRoFUsyaBZHQKYgYBo24ut1fZQoaAZoCWgPQwjT9UTXhZ/9v5SGlFKUaBVLMmgWR0CmICNhNM4+dX2UKGgGaAloD0MIryKjA5KQD8CUhpRSlGgVSzJoFkdAph/nR/mT1XV9lChoBmgJaA9DCHY25J8ZxAXAlIaUUpRoFUsyaBZHQKYhmgQHzH11fZQoaAZoCWgPQwhn0qbqHln+v5SGlFKUaBVLMmgWR0CmIV7ZOBUadX2UKGgGaAloD0MIRE30+SjDAsCUhpRSlGgVSzJoFkdApiEiL4vexnV9lChoBmgJaA9DCJ+T3je+tvq/lIaUUpRoFUsyaBZHQKYg5lvqC6J1fZQoaAZoCWgPQwiQ9dTqq+v4v5SGlFKUaBVLMmgWR0CmIotcGC7LdX2UKGgGaAloD0MI7FG4HoXr/7+UhpRSlGgVSzJoFkdApiJQIUrTY3V9lChoBmgJaA9DCNR+aydKQvy/lIaUUpRoFUsyaBZHQKYiEyad+Xt1fZQoaAZoCWgPQwjMJVXbTRAQwJSGlFKUaBVLMmgWR0CmIdeQEIPcdX2UKGgGaAloD0MIS8lyEkpfBsCUhpRSlGgVSzJoFkdApiN5Vp9JBnV9lChoBmgJaA9DCEcdHVcjO/+/lIaUUpRoFUsyaBZHQKYjPiWE9Md1fZQoaAZoCWgPQwjicyfYf/0CwJSGlFKUaBVLMmgWR0CmIwFKsdT6dX2UKGgGaAloD0MI1gEQd/Xq+7+UhpRSlGgVSzJoFkdApiLFOuaF23V9lChoBmgJaA9DCKypLAq7qAXAlIaUUpRoFUsyaBZHQKYkWyD7Ikt1fZQoaAZoCWgPQwgLRiV1AvoCwJSGlFKUaBVLMmgWR0CmJB+sPrfMdX2UKGgGaAloD0MIsOjWa3qQ/b+UhpRSlGgVSzJoFkdApiPi4SYgJXV9lChoBmgJaA9DCNQQVfgzrBDAlIaUUpRoFUsyaBZHQKYjpssxwhp1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:afe71756d4b35d06a53a8ddb0a7860309dad4ab38c027ebe6950e93b38b25f63
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:068d010ba233246b19262c6947619a552ad3c14a7b00a5f972e69eaf056afb7e
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fed3dcd2050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fed3dccea00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683271349777742511, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAACaPNPkDfiLwbwRE/CaPNPkDfiLwbwRE/CaPNPkDfiLwbwRE/CaPNPkDfiLwbwRE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAqg7hPbsPRL6okxG//7oPPpFJhD8/dN2/QxAHP7IFbj94l7O/Q3/uvpG02j/yX46/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAJo80+QN+IvBvBET/lhca7ZRSVuqe6D7sJo80+QN+IvBvBET/lhca7ZRSVuqe6D7sJo80+QN+IvBvBET/lhca7ZRSVuqe6D7sJo80+QN+IvBvBET/lhca7ZRSVuqe6D7uUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.40163448 -0.01670802 0.5693528 ]\n [ 0.40163448 -0.01670802 0.5693528 ]\n [ 0.40163448 -0.01670802 0.5693528 ]\n [ 0.40163448 -0.01670802 0.5693528 ]]", "desired_goal": "[[ 0.10989125 -0.19146626 -0.5686593 ]\n [ 0.14036177 1.0334951 -1.73011 ]\n [ 0.5275919 0.9297744 -1.40306 ]\n [-0.46581468 1.7086354 -1.112303 ]]", "observation": "[[ 0.40163448 -0.01670802 0.5693528 -0.00605844 -0.00113739 -0.00219313]\n [ 0.40163448 -0.01670802 0.5693528 -0.00605844 -0.00113739 -0.00219313]\n [ 0.40163448 -0.01670802 0.5693528 -0.00605844 -0.00113739 -0.00219313]\n [ 0.40163448 -0.01670802 0.5693528 -0.00605844 -0.00113739 -0.00219313]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8oGcPZ8TDT5u5cE7yqIRvR9SCT6UW5A9Y/mivRv87r1gm6I9WTCNPeYEwby3wm4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.07641973 0.13777016 0.00591724]\n [-0.03555564 0.13410233 0.07048717]\n [-0.07957723 -0.11669179 0.07939792]\n [ 0.06893987 -0.02356191 0.23316465]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOE4K8x5n+r+UhpRSlIwBbJRLMowBdJRHQKYJMLb5/LF1fZQoaAZoCWgPQwg9SE+RQ0T2v5SGlFKUaBVLMmgWR0CmCPVxjriVdX2UKGgGaAloD0MIN6W8VkJ3AsCUhpRSlGgVSzJoFkdApgi4pz90inV9lChoBmgJaA9DCCf5Eb9iTQrAlIaUUpRoFUsyaBZHQKYIfKlpGnZ1fZQoaAZoCWgPQwg2dLM/UO77v5SGlFKUaBVLMmgWR0CmCh8Hv+fidX2UKGgGaAloD0MIjXxe8dSj97+UhpRSlGgVSzJoFkdApgnjjR2KVXV9lChoBmgJaA9DCJBOXfksT/e/lIaUUpRoFUsyaBZHQKYJprC3w1B1fZQoaAZoCWgPQwia7Qp9sMz1v5SGlFKUaBVLMmgWR0CmCWrIPsiTdX2UKGgGaAloD0MIJbA5B89EBMCUhpRSlGgVSzJoFkdApgsTUAksz3V9lChoBmgJaA9DCMpskElGDvq/lIaUUpRoFUsyaBZHQKYK2AbyYol1fZQoaAZoCWgPQwhw6ZjzjH0JwJSGlFKUaBVLMmgWR0CmCps8PnSwdX2UKGgGaAloD0MI8L4qFyo/BMCUhpRSlGgVSzJoFkdApgpfWattAXV9lChoBmgJaA9DCJVJDW0AdgnAlIaUUpRoFUsyaBZHQKYL/1wo9cN1fZQoaAZoCWgPQwiZKhiV1MkDwJSGlFKUaBVLMmgWR0CmC8QgDA8CdX2UKGgGaAloD0MITS8xlumXBMCUhpRSlGgVSzJoFkdApguHY+Sr53V9lChoBmgJaA9DCOIDO/4LJADAlIaUUpRoFUsyaBZHQKYLS4z7/GV1fZQoaAZoCWgPQwjVWpiFdq4JwJSGlFKUaBVLMmgWR0CmDOqpT/ACdX2UKGgGaAloD0MIuqEpO/0gC8CUhpRSlGgVSzJoFkdApgyvWUbDM3V9lChoBmgJaA9DCOmY84x9CQjAlIaUUpRoFUsyaBZHQKYMcpzcRDl1fZQoaAZoCWgPQwgj2Lj+Xd8CwJSGlFKUaBVLMmgWR0CmDDajFhoedX2UKGgGaAloD0MI/YSzW8sECcCUhpRSlGgVSzJoFkdApg3egi/wiXV9lChoBmgJaA9DCAqBXOLIg/m/lIaUUpRoFUsyaBZHQKYNo3cYZVJ1fZQoaAZoCWgPQwjXMhmO5xMGwJSGlFKUaBVLMmgWR0CmDWatknTidX2UKGgGaAloD0MIcZAQ5QvaB8CUhpRSlGgVSzJoFkdApg0qwfQrtnV9lChoBmgJaA9DCMTMPo9R3gDAlIaUUpRoFUsyaBZHQKYOz0VafSR1fZQoaAZoCWgPQwgwoBfuXBj/v5SGlFKUaBVLMmgWR0CmDpQNsnAqdX2UKGgGaAloD0MIt5ifG5oSAcCUhpRSlGgVSzJoFkdApg5XPE87p3V9lChoBmgJaA9DCKDdIcUASQDAlIaUUpRoFUsyaBZHQKYOG2/BWPt1fZQoaAZoCWgPQwgEG9e/6zP2v5SGlFKUaBVLMmgWR0CmD73ta6jGdX2UKGgGaAloD0MItg4O9iamAcCUhpRSlGgVSzJoFkdApg+CuEEkjXV9lChoBmgJaA9DCNds5SX/U/6/lIaUUpRoFUsyaBZHQKYPRhc7heh1fZQoaAZoCWgPQwjW5v9VR877v5SGlFKUaBVLMmgWR0CmDwoYekpJdX2UKGgGaAloD0MIh07Pu7Hg/b+UhpRSlGgVSzJoFkdAphDRccENfHV9lChoBmgJaA9DCKSIDKt4owDAlIaUUpRoFUsyaBZHQKYQljR2KVJ1fZQoaAZoCWgPQwgi4Xt/g3YKwJSGlFKUaBVLMmgWR0CmEFmPgeijdX2UKGgGaAloD0MI+ptQiICjAsCUhpRSlGgVSzJoFkdAphAd2s7uD3V9lChoBmgJaA9DCKuWdJSDGQbAlIaUUpRoFUsyaBZHQKYRzR4yGi51fZQoaAZoCWgPQwgjMqzijawGwJSGlFKUaBVLMmgWR0CmEZH7P6bfdX2UKGgGaAloD0MIbtqM0xBVAcCUhpRSlGgVSzJoFkdAphFVMh5gPXV9lChoBmgJaA9DCAA49uy5DAbAlIaUUpRoFUsyaBZHQKYRGXokiUx1fZQoaAZoCWgPQwjMJsCw/PkEwJSGlFKUaBVLMmgWR0CmEscXFcY7dX2UKGgGaAloD0MI6/6xEB2CA8CUhpRSlGgVSzJoFkdAphKL39JjD3V9lChoBmgJaA9DCP9cNGQ86gfAlIaUUpRoFUsyaBZHQKYSTwy6+WZ1fZQoaAZoCWgPQwjTLTvEP6z4v5SGlFKUaBVLMmgWR0CmEhM/yGzsdX2UKGgGaAloD0MIO/w1WaMeBMCUhpRSlGgVSzJoFkdAphPK2DxsmHV9lChoBmgJaA9DCKSMuAA0agfAlIaUUpRoFUsyaBZHQKYTj7w8W9F1fZQoaAZoCWgPQwjuIeF7f8P5v5SGlFKUaBVLMmgWR0CmE1MKLKmsdX2UKGgGaAloD0MIi1BsBU0L9L+UhpRSlGgVSzJoFkdAphMXKuB+WnV9lChoBmgJaA9DCIXMlUG1Afa/lIaUUpRoFUsyaBZHQKYUz4t6HCZ1fZQoaAZoCWgPQwioj8Affv74v5SGlFKUaBVLMmgWR0CmFJQ2/BWQdX2UKGgGaAloD0MIlQ1rKosC9r+UhpRSlGgVSzJoFkdAphRXgP3BYXV9lChoBmgJaA9DCJyGqMKfgQnAlIaUUpRoFUsyaBZHQKYUG5c1O0t1fZQoaAZoCWgPQwh81F+vsIABwJSGlFKUaBVLMmgWR0CmFeMfA9FGdX2UKGgGaAloD0MISwLU1LL1+L+UhpRSlGgVSzJoFkdAphWoqy4WlHV9lChoBmgJaA9DCK7yBMJO8fq/lIaUUpRoFUsyaBZHQKYVbI0ZWJd1fZQoaAZoCWgPQwh+chQgCoYFwJSGlFKUaBVLMmgWR0CmFTGTcIqtdX2UKGgGaAloD0MIT5FDxM0JAcCUhpRSlGgVSzJoFkdAphd2JgsshHV9lChoBmgJaA9DCLdDw2LUNfq/lIaUUpRoFUsyaBZHQKYXO3eenQ91fZQoaAZoCWgPQwird7gdGlYDwJSGlFKUaBVLMmgWR0CmFv85jpcHdX2UKGgGaAloD0MIBJKwbycR/r+UhpRSlGgVSzJoFkdAphbD8k2P1nV9lChoBmgJaA9DCGl0B7Ezhfm/lIaUUpRoFUsyaBZHQKYZDfE4vOB1fZQoaAZoCWgPQwiw4lRrYfYCwJSGlFKUaBVLMmgWR0CmGNNqYZ2qdX2UKGgGaAloD0MIxJj091JYAcCUhpRSlGgVSzJoFkdAphiXZsbednV9lChoBmgJaA9DCMKk+PiE7Py/lIaUUpRoFUsyaBZHQKYYXGax5cF1fZQoaAZoCWgPQwicw7Xaw54JwJSGlFKUaBVLMmgWR0CmGprg4wRHdX2UKGgGaAloD0MIHZJaKJm8AcCUhpRSlGgVSzJoFkdAphpgZflZHXV9lChoBmgJaA9DCBToE3mS9P2/lIaUUpRoFUsyaBZHQKYaJG4qgAZ1fZQoaAZoCWgPQwjL9baZCjEAwJSGlFKUaBVLMmgWR0CmGel/x2B8dX2UKGgGaAloD0MIaLJ/ngbMA8CUhpRSlGgVSzJoFkdAphw1kWhysHV9lChoBmgJaA9DCKinj8Afvve/lIaUUpRoFUsyaBZHQKYb+0Xxe9l1fZQoaAZoCWgPQwgQdR+A1Ob+v5SGlFKUaBVLMmgWR0CmG78XenAJdX2UKGgGaAloD0MIhXr6CPzh+7+UhpRSlGgVSzJoFkdAphuEHnlny3V9lChoBmgJaA9DCOfgmdAksQLAlIaUUpRoFUsyaBZHQKYd2obXHzZ1fZQoaAZoCWgPQwj/WIgOgeP5v5SGlFKUaBVLMmgWR0CmHaBHCoCNdX2UKGgGaAloD0MIAAAAAABA/b+UhpRSlGgVSzJoFkdAph1kTSLIgnV9lChoBmgJaA9DCCgLX1/rkvq/lIaUUpRoFUsyaBZHQKYdKVHnU2F1fZQoaAZoCWgPQwhmMEYkCu0BwJSGlFKUaBVLMmgWR0CmH3HKwIMSdX2UKGgGaAloD0MI6NhBJa6DAsCUhpRSlGgVSzJoFkdAph83JzT4L3V9lChoBmgJaA9DCMx+3enOswfAlIaUUpRoFUsyaBZHQKYe+0b961N1fZQoaAZoCWgPQwhCCTNt/+oCwJSGlFKUaBVLMmgWR0CmHr/zJ6ppdX2UKGgGaAloD0MIndfYJar3/r+UhpRSlGgVSzJoFkdApiCbZnL7oHV9lChoBmgJaA9DCH8UdeYeEgnAlIaUUpRoFUsyaBZHQKYgYBo24ut1fZQoaAZoCWgPQwjT9UTXhZ/9v5SGlFKUaBVLMmgWR0CmICNhNM4+dX2UKGgGaAloD0MIryKjA5KQD8CUhpRSlGgVSzJoFkdAph/nR/mT1XV9lChoBmgJaA9DCHY25J8ZxAXAlIaUUpRoFUsyaBZHQKYhmgQHzH11fZQoaAZoCWgPQwhn0qbqHln+v5SGlFKUaBVLMmgWR0CmIV7ZOBUadX2UKGgGaAloD0MIRE30+SjDAsCUhpRSlGgVSzJoFkdApiEiL4vexnV9lChoBmgJaA9DCJ+T3je+tvq/lIaUUpRoFUsyaBZHQKYg5lvqC6J1fZQoaAZoCWgPQwiQ9dTqq+v4v5SGlFKUaBVLMmgWR0CmIotcGC7LdX2UKGgGaAloD0MI7FG4HoXr/7+UhpRSlGgVSzJoFkdApiJQIUrTY3V9lChoBmgJaA9DCNR+aydKQvy/lIaUUpRoFUsyaBZHQKYiEyad+Xt1fZQoaAZoCWgPQwjMJVXbTRAQwJSGlFKUaBVLMmgWR0CmIdeQEIPcdX2UKGgGaAloD0MIS8lyEkpfBsCUhpRSlGgVSzJoFkdApiN5Vp9JBnV9lChoBmgJaA9DCEcdHVcjO/+/lIaUUpRoFUsyaBZHQKYjPiWE9Md1fZQoaAZoCWgPQwjicyfYf/0CwJSGlFKUaBVLMmgWR0CmIwFKsdT6dX2UKGgGaAloD0MI1gEQd/Xq+7+UhpRSlGgVSzJoFkdApiLFOuaF23V9lChoBmgJaA9DCKypLAq7qAXAlIaUUpRoFUsyaBZHQKYkWyD7Ikt1fZQoaAZoCWgPQwgLRiV1AvoCwJSGlFKUaBVLMmgWR0CmJB+sPrfMdX2UKGgGaAloD0MIsOjWa3qQ/b+UhpRSlGgVSzJoFkdApiPi4SYgJXV9lChoBmgJaA9DCNQQVfgzrBDAlIaUUpRoFUsyaBZHQKYjpssxwhp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (748 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.9833407903672196, "std_reward": 0.5909245195889516, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-05T08:09:55.576259"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eab910ba7c8c9ad3db1fa2b86a5b7482d72bbea675f0f35259daaab4a50dd0c2
|
3 |
+
size 2387
|