mikr commited on
Commit
a94ee59
1 Parent(s): 77bae23

End of training

Browse files
all_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 121.94,
3
+ "eval_loss": 0.25634765625,
4
+ "eval_runtime": 1267.1826,
5
+ "eval_samples_per_second": 1.046,
6
+ "eval_steps_per_second": 0.131,
7
+ "eval_wer": 8.37737794884072,
8
+ "train_loss": 0.00465274755358696,
9
+ "train_runtime": 62864.0618,
10
+ "train_samples_per_second": 5.09,
11
+ "train_steps_per_second": 0.08
12
+ }
eval_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 121.94,
3
+ "eval_loss": 0.25634765625,
4
+ "eval_runtime": 1267.1826,
5
+ "eval_samples_per_second": 1.046,
6
+ "eval_steps_per_second": 0.131,
7
+ "eval_wer": 8.37737794884072
8
+ }
run.log CHANGED
@@ -40308,3 +40308,31 @@ To https://huggingface.co/mikr/whisper-audio-concat-test
40308
  7fb1a03..7ee2db0 main -> main
40309
 
40310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40311
  0%| | 0/166 [00:00<?, ?it/s]
40312
  1%| | 2/166 [00:05<07:55, 2.90s/it]
40313
  2%|▏ | 3/166 [00:11<11:10, 4.11s/it]
40314
  2%|▏ | 4/166 [00:17<12:55, 4.78s/it]
40315
  3%|▎ | 5/166 [00:24<15:05, 5.63s/it]
40316
  4%|▎ | 6/166 [00:32<16:27, 6.17s/it]
40317
  4%|▍ | 7/166 [00:38<16:26, 6.20s/it]
40318
  5%|▍ | 8/166 [00:44<16:02, 6.09s/it]
40319
  5%|▌ | 9/166 [00:50<15:49, 6.05s/it]
40320
  6%|▌ | 10/166 [00:55<15:30, 5.97s/it]
40321
  7%|▋ | 11/166 [01:01<15:08, 5.86s/it]
40322
  7%|▋ | 12/166 [01:07<15:09, 5.90s/it]
40323
  8%|▊ | 13/166 [01:13<15:30, 6.08s/it]
40324
  8%|▊ | 14/166 [01:20<16:04, 6.35s/it]
40325
  9%|▉ | 15/166 [01:26<15:27, 6.14s/it]
40326
  10%|▉ | 16/166 [01:33<16:15, 6.50s/it]
40327
  10%|█ | 17/166 [01:40<16:18, 6.57s/it]
40328
  11%|█ | 18/166 [01:46<15:58, 6.48s/it]
40329
  11%|█▏ | 19/166 [01:52<15:26, 6.30s/it]
40330
  12%|█▏ | 20/166 [02:03<18:35, 7.64s/it]
40331
  13%|█▎ | 21/166 [02:10<18:09, 7.51s/it]
40332
  13%|█▎ | 22/166 [02:18<17:54, 7.46s/it]
40333
  14%|█▍ | 23/166 [02:25<17:52, 7.50s/it]
40334
  14%|█▍ | 24/166 [02:32<17:01, 7.20s/it]
40335
  15%|█▌ | 25/166 [02:39<16:55, 7.20s/it]
40336
  16%|█▌ | 26/166 [02:46<16:42, 7.16s/it]
40337
  16%|█▋ | 27/166 [02:53<16:44, 7.23s/it]
40338
  17%|█▋ | 28/166 [02:59<15:48, 6.87s/it]
40339
  17%|█▋ | 29/166 [03:07<16:29, 7.22s/it]
40340
  18%|█▊ | 30/166 [03:14<16:05, 7.10s/it]
40341
  19%|█▊ | 31/166 [03:22<16:05, 7.15s/it]
40342
  19%|█▉ | 32/166 [03:29<16:18, 7.30s/it]
40343
  20%|█▉ | 33/166 [03:36<16:09, 7.29s/it]
40344
  20%|██ | 34/166 [03:43<15:28, 7.03s/it]
40345
  21%|██ | 35/166 [03:51<15:57, 7.31s/it]
40346
  22%|██▏ | 36/166 [03:58<15:55, 7.35s/it]
40347
  22%|██▏ | 37/166 [04:05<15:14, 7.09s/it]
40348
  23%|██▎ | 38/166 [04:13<16:03, 7.53s/it]
40349
  23%|██▎ | 39/166 [04:20<15:31, 7.33s/it]
40350
  24%|██▍ | 40/166 [04:28<15:37, 7.44s/it]
40351
  25%|██▍ | 41/166 [04:35<15:00, 7.20s/it]
40352
  25%|██▌ | 42/166 [04:41<14:34, 7.05s/it]
40353
  26%|██▌ | 43/166 [04:48<14:04, 6.87s/it]
40354
  27%|██▋ | 44/166 [04:56<14:58, 7.36s/it]
40355
  27%|██▋ | 45/166 [05:04<15:16, 7.57s/it]
40356
  28%|██▊ | 46/166 [05:14<16:36, 8.30s/it]
40357
  28%|██▊ | 47/166 [05:22<16:24, 8.27s/it]
40358
  29%|██▉ | 48/166 [05:30<15:34, 7.92s/it]
40359
  30%|██▉ | 49/166 [05:35<14:14, 7.30s/it]
40360
  30%|███ | 50/166 [05:44<14:49, 7.67s/it]
40361
  31%|███ | 51/166 [05:51<14:33, 7.59s/it]
40362
  31%|███▏ | 52/166 [05:59<14:26, 7.60s/it]
40363
  32%|███▏ | 53/166 [06:06<14:03, 7.46s/it]
40364
  33%|███▎ | 54/166 [06:14<14:11, 7.61s/it]
40365
  33%|███▎ | 55/166 [06:20<13:08, 7.10s/it]
40366
  34%|███▎ | 56/166 [06:26<12:30, 6.83s/it]
40367
  34%|███▍ | 57/166 [06:34<13:04, 7.20s/it]
40368
  35%|███▍ | 58/166 [06:40<12:03, 6.70s/it]
40369
  36%|███▌ | 59/166 [06:47<12:05, 6.78s/it]
40370
  36%|███▌ | 60/166 [06:54<12:08, 6.87s/it]
40371
  37%|███▋ | 61/166 [07:03<13:12, 7.54s/it]
40372
  37%|███▋ | 62/166 [07:10<12:57, 7.48s/it]
40373
  38%|███▊ | 63/166 [07:17<12:39, 7.37s/it]
40374
  39%|███▊ | 64/166 [07:27<13:27, 7.91s/it]
40375
  39%|███▉ | 65/166 [07:35<13:31, 8.04s/it]
40376
  40%|███▉ | 66/166 [07:42<12:48, 7.68s/it]
40377
  40%|████ | 67/166 [07:49<12:17, 7.45s/it]
40378
  41%|████ | 68/166 [07:54<11:02, 6.76s/it]
40379
  42%|████▏ | 69/166 [08:01<10:58, 6.79s/it]
40380
  42%|████▏ | 70/166 [08:09<11:26, 7.15s/it]
40381
  43%|████▎ | 71/166 [08:17<11:40, 7.37s/it]
40382
  43%|████▎ | 72/166 [08:23<11:07, 7.10s/it]
40383
  44%|████▍ | 73/166 [08:29<10:40, 6.89s/it]
40384
  45%|████▍ | 74/166 [08:36<10:17, 6.71s/it]
40385
  45%|████▌ | 75/166 [08:42<09:59, 6.59s/it]
40386
  46%|████▌ | 76/166 [08:49<10:09, 6.77s/it]
40387
  46%|████▋ | 77/166 [08:55<09:36, 6.48s/it]
40388
  47%|████▋ | 78/166 [09:02<09:46, 6.66s/it]
40389
  48%|████▊ | 79/166 [09:10<10:12, 7.04s/it]
40390
  48%|████▊ | 80/166 [09:18<10:37, 7.41s/it]
40391
  49%|████▉ | 81/166 [09:26<10:39, 7.53s/it]
40392
  49%|████▉ | 82/166 [09:33<10:16, 7.34s/it]
40393
  50%|█████ | 83/166 [09:38<09:19, 6.74s/it]
40394
  51%|█████ | 84/166 [09:45<09:03, 6.63s/it]
40395
  51%|█████ | 85/166 [09:52<09:11, 6.81s/it]
40396
  52%|█████▏ | 86/166 [10:00<09:41, 7.27s/it]
40397
  52%|█████▏ | 87/166 [10:08<09:41, 7.36s/it]
40398
  53%|█████▎ | 88/166 [10:15<09:18, 7.16s/it]
40399
  54%|█████▎ | 89/166 [10:22<09:14, 7.20s/it]
40400
  54%|█████▍ | 90/166 [10:28<08:51, 7.00s/it]
40401
  55%|█████▍ | 91/166 [10:35<08:36, 6.89s/it]
40402
  55%|█████▌ | 92/166 [10:41<08:08, 6.60s/it]
40403
  56%|█████▌ | 93/166 [10:49<08:34, 7.04s/it]
40404
  57%|█████▋ | 94/166 [10:59<09:34, 7.98s/it]
40405
  57%|█████▋ | 95/166 [11:04<08:28, 7.16s/it]
40406
  58%|█████▊ | 96/166 [11:11<08:06, 6.95s/it]
40407
  58%|█████▊ | 97/166 [11:21<09:06, 7.92s/it]
40408
  59%|█████▉ | 98/166 [11:31<09:38, 8.50s/it]
40409
  60%|█████▉ | 99/166 [11:38<09:08, 8.18s/it]
40410
  60%|██████ | 100/166 [11:45<08:20, 7.59s/it]
40411
  61%|██████ | 101/166 [11:51<07:52, 7.27s/it]
40412
  61%|██████▏ | 102/166 [12:00<08:15, 7.74s/it]
40413
  62%|██████▏ | 103/166 [12:09<08:30, 8.10s/it]
40414
  63%|██████▎ | 104/166 [12:16<08:05, 7.83s/it]
40415
  63%|██████▎ | 105/166 [12:24<08:03, 7.92s/it]
40416
  64%|██████▍ | 106/166 [12:34<08:29, 8.49s/it]
40417
  64%|██████▍ | 107/166 [12:44<08:40, 8.82s/it]
40418
  65%|██████▌ | 108/166 [12:49<07:32, 7.81s/it]
40419
  66%|██████▌ | 109/166 [12:55<07:00, 7.37s/it]
40420
  66%|██████▋ | 110/166 [13:03<06:53, 7.39s/it]
40421
  67%|██████▋ | 111/166 [13:09<06:23, 6.97s/it]
40422
  67%|██████▋ | 112/166 [13:16<06:20, 7.06s/it]
40423
  68%|██████▊ | 113/166 [13:25<06:38, 7.52s/it]
40424
  69%|██████▊ | 114/166 [13:32<06:29, 7.49s/it]
40425
  69%|██████▉ | 115/166 [13:38<06:03, 7.13s/it]
40426
  70%|██████▉ | 116/166 [13:45<05:43, 6.87s/it]
40427
  70%|███████ | 117/166 [13:52<05:45, 7.06s/it]
40428
  71%|███████ | 118/166 [14:00<05:48, 7.27s/it]
40429
  72%|███████▏ | 119/166 [14:08<05:47, 7.39s/it]
40430
  72%|███████▏ | 120/166 [14:16<05:51, 7.64s/it]
40431
  73%|███████▎ | 121/166 [14:24<05:52, 7.84s/it]
40432
  73%|███████▎ | 122/166 [14:32<05:42, 7.78s/it]
40433
  74%|███████▍ | 123/166 [14:39<05:27, 7.62s/it]
40434
  75%|███████▍ | 124/166 [14:46<05:08, 7.34s/it]
40435
  75%|███████▌ | 125/166 [14:53<05:02, 7.37s/it]
40436
  76%|███████▌ | 126/166 [15:02<05:07, 7.70s/it]
40437
  77%|███████▋ | 127/166 [15:07<04:28, 6.88s/it]
40438
  77%|███████▋ | 128/166 [15:17<04:58, 7.84s/it]
40439
  78%|███████▊ | 129/166 [15:25<04:50, 7.86s/it]
40440
  78%|███████▊ | 130/166 [15:31<04:32, 7.56s/it]
40441
  79%|███████▉ | 131/166 [15:38<04:18, 7.40s/it]
40442
  80%|███████▉ | 132/166 [15:47<04:19, 7.62s/it]
40443
  80%|████████ | 133/166 [15:54<04:12, 7.64s/it]
40444
  81%|████████ | 134/166 [16:01<03:53, 7.30s/it]
40445
  81%|████████▏ | 135/166 [16:07<03:35, 6.95s/it]
40446
  82%|████████▏ | 136/166 [16:17<04:00, 8.00s/it]
40447
  83%|████████▎ | 137/166 [16:26<04:00, 8.30s/it]
40448
  83%|████████▎ | 138/166 [16:36<04:07, 8.83s/it]
40449
  84%|████████▎ | 139/166 [16:45<03:53, 8.66s/it]
40450
  84%|████████▍ | 140/166 [16:51<03:26, 7.95s/it]
40451
  85%|████████▍ | 141/166 [16:57<03:03, 7.34s/it]
40452
  86%|████████▌ | 142/166 [17:04<02:54, 7.28s/it]
40453
  86%|████████▌ | 143/166 [17:10<02:35, 6.75s/it]
40454
  87%|████████▋ | 144/166 [17:18<02:41, 7.36s/it]
40455
  87%|████████▋ | 145/166 [17:28<02:49, 8.07s/it]
40456
  88%|████████▊ | 146/166 [17:37<02:48, 8.44s/it]
40457
  89%|████████▊ | 147/166 [17:46<02:40, 8.43s/it]
40458
  89%|████████▉ | 148/166 [17:54<02:31, 8.42s/it]
40459
  90%|████████▉ | 149/166 [18:03<02:26, 8.65s/it]
40460
  90%|████��████ | 150/166 [18:13<02:23, 8.99s/it]
40461
  91%|█████████ | 151/166 [18:21<02:10, 8.70s/it]
40462
  92%|█████████▏| 152/166 [18:27<01:49, 7.82s/it]
40463
  92%|█████████▏| 153/166 [18:33<01:36, 7.41s/it]
40464
  93%|█████████▎| 154/166 [18:41<01:28, 7.38s/it]
40465
  93%|█████████▎| 155/166 [18:48<01:22, 7.49s/it]
40466
  94%|█████████▍| 156/166 [18:54<01:10, 7.01s/it]
40467
  95%|█████████▍| 157/166 [19:01<01:02, 6.91s/it]
40468
  95%|█████████▌| 158/166 [19:07<00:52, 6.52s/it]
40469
  96%|█████████▌| 159/166 [19:11<00:41, 5.98s/it]
40470
  96%|█████████▋| 160/166 [19:16<00:34, 5.70s/it]
40471
  97%|█████████▋| 161/166 [19:22<00:29, 5.81s/it]
40472
  98%|█████████▊| 162/166 [19:29<00:24, 6.13s/it]
40473
  98%|█████████▊| 163/166 [19:36<00:19, 6.43s/it]
40474
  99%|█████████▉| 164/166 [19:43<00:12, 6.34s/it]
40475
  99%|█████████▉| 165/166 [19:48<00:06, 6.22s/it]
 
 
 
 
 
 
 
 
 
 
 
 
40308
  7fb1a03..7ee2db0 main -> main
40309
 
40310
 
40311
+ To https://huggingface.co/mikr/whisper-audio-concat-test
40312
+ 7ee2db0..77bae23 main -> main
40313
+
40314
+ 12/21/2022 03:54:43 - WARNING - huggingface_hub.repository - To https://huggingface.co/mikr/whisper-audio-concat-test
40315
+ 7ee2db0..77bae23 main -> main
40316
+
40317
+ ***** train metrics *****
40318
+ epoch = 121.94
40319
+ train_loss = 0.0047
40320
+ train_runtime = 17:27:44.06
40321
+ train_samples_per_second = 5.09
40322
+ train_steps_per_second = 0.08
40323
+ 12/21/2022 03:54:48 - INFO - __main__ - *** Evaluate ***
40324
+ [INFO|trainer.py:2955] 2022-12-21 03:54:48,734 >> ***** Running Evaluation *****
40325
+ [INFO|trainer.py:2957] 2022-12-21 03:54:48,734 >> Num examples = 1325
40326
+ [INFO|trainer.py:2960] 2022-12-21 03:54:48,734 >> Batch size = 8
40327
+
40328
  0%| | 0/166 [00:00<?, ?it/s]
40329
  1%| | 2/166 [00:05<07:55, 2.90s/it]
40330
  2%|▏ | 3/166 [00:11<11:10, 4.11s/it]
40331
  2%|▏ | 4/166 [00:17<12:55, 4.78s/it]
40332
  3%|▎ | 5/166 [00:24<15:05, 5.63s/it]
40333
  4%|▎ | 6/166 [00:32<16:27, 6.17s/it]
40334
  4%|▍ | 7/166 [00:38<16:26, 6.20s/it]
40335
  5%|▍ | 8/166 [00:44<16:02, 6.09s/it]
40336
  5%|▌ | 9/166 [00:50<15:49, 6.05s/it]
40337
  6%|▌ | 10/166 [00:55<15:30, 5.97s/it]
40338
  7%|▋ | 11/166 [01:01<15:08, 5.86s/it]
40339
  7%|▋ | 12/166 [01:07<15:09, 5.90s/it]
40340
  8%|▊ | 13/166 [01:13<15:30, 6.08s/it]
40341
  8%|▊ | 14/166 [01:20<16:04, 6.35s/it]
40342
  9%|▉ | 15/166 [01:26<15:27, 6.14s/it]
40343
  10%|▉ | 16/166 [01:33<16:15, 6.50s/it]
40344
  10%|█ | 17/166 [01:40<16:18, 6.57s/it]
40345
  11%|█ | 18/166 [01:46<15:58, 6.48s/it]
40346
  11%|█▏ | 19/166 [01:52<15:26, 6.30s/it]
40347
  12%|█▏ | 20/166 [02:03<18:35, 7.64s/it]
40348
  13%|█▎ | 21/166 [02:10<18:09, 7.51s/it]
40349
  13%|█▎ | 22/166 [02:18<17:54, 7.46s/it]
40350
  14%|█▍ | 23/166 [02:25<17:52, 7.50s/it]
40351
  14%|█▍ | 24/166 [02:32<17:01, 7.20s/it]
40352
  15%|█▌ | 25/166 [02:39<16:55, 7.20s/it]
40353
  16%|█▌ | 26/166 [02:46<16:42, 7.16s/it]
40354
  16%|█▋ | 27/166 [02:53<16:44, 7.23s/it]
40355
  17%|█▋ | 28/166 [02:59<15:48, 6.87s/it]
40356
  17%|█▋ | 29/166 [03:07<16:29, 7.22s/it]
40357
  18%|█▊ | 30/166 [03:14<16:05, 7.10s/it]
40358
  19%|█▊ | 31/166 [03:22<16:05, 7.15s/it]
40359
  19%|█▉ | 32/166 [03:29<16:18, 7.30s/it]
40360
  20%|█▉ | 33/166 [03:36<16:09, 7.29s/it]
40361
  20%|██ | 34/166 [03:43<15:28, 7.03s/it]
40362
  21%|██ | 35/166 [03:51<15:57, 7.31s/it]
40363
  22%|██▏ | 36/166 [03:58<15:55, 7.35s/it]
40364
  22%|██▏ | 37/166 [04:05<15:14, 7.09s/it]
40365
  23%|██▎ | 38/166 [04:13<16:03, 7.53s/it]
40366
  23%|██▎ | 39/166 [04:20<15:31, 7.33s/it]
40367
  24%|██▍ | 40/166 [04:28<15:37, 7.44s/it]
40368
  25%|██▍ | 41/166 [04:35<15:00, 7.20s/it]
40369
  25%|██▌ | 42/166 [04:41<14:34, 7.05s/it]
40370
  26%|██▌ | 43/166 [04:48<14:04, 6.87s/it]
40371
  27%|██▋ | 44/166 [04:56<14:58, 7.36s/it]
40372
  27%|██▋ | 45/166 [05:04<15:16, 7.57s/it]
40373
  28%|██▊ | 46/166 [05:14<16:36, 8.30s/it]
40374
  28%|██▊ | 47/166 [05:22<16:24, 8.27s/it]
40375
  29%|██▉ | 48/166 [05:30<15:34, 7.92s/it]
40376
  30%|██▉ | 49/166 [05:35<14:14, 7.30s/it]
40377
  30%|███ | 50/166 [05:44<14:49, 7.67s/it]
40378
  31%|███ | 51/166 [05:51<14:33, 7.59s/it]
40379
  31%|███▏ | 52/166 [05:59<14:26, 7.60s/it]
40380
  32%|███▏ | 53/166 [06:06<14:03, 7.46s/it]
40381
  33%|███▎ | 54/166 [06:14<14:11, 7.61s/it]
40382
  33%|███▎ | 55/166 [06:20<13:08, 7.10s/it]
40383
  34%|███▎ | 56/166 [06:26<12:30, 6.83s/it]
40384
  34%|███▍ | 57/166 [06:34<13:04, 7.20s/it]
40385
  35%|███▍ | 58/166 [06:40<12:03, 6.70s/it]
40386
  36%|███▌ | 59/166 [06:47<12:05, 6.78s/it]
40387
  36%|███▌ | 60/166 [06:54<12:08, 6.87s/it]
40388
  37%|███▋ | 61/166 [07:03<13:12, 7.54s/it]
40389
  37%|███▋ | 62/166 [07:10<12:57, 7.48s/it]
40390
  38%|███▊ | 63/166 [07:17<12:39, 7.37s/it]
40391
  39%|███▊ | 64/166 [07:27<13:27, 7.91s/it]
40392
  39%|███▉ | 65/166 [07:35<13:31, 8.04s/it]
40393
  40%|███▉ | 66/166 [07:42<12:48, 7.68s/it]
40394
  40%|████ | 67/166 [07:49<12:17, 7.45s/it]
40395
  41%|████ | 68/166 [07:54<11:02, 6.76s/it]
40396
  42%|████▏ | 69/166 [08:01<10:58, 6.79s/it]
40397
  42%|████▏ | 70/166 [08:09<11:26, 7.15s/it]
40398
  43%|████▎ | 71/166 [08:17<11:40, 7.37s/it]
40399
  43%|████▎ | 72/166 [08:23<11:07, 7.10s/it]
40400
  44%|████▍ | 73/166 [08:29<10:40, 6.89s/it]
40401
  45%|████▍ | 74/166 [08:36<10:17, 6.71s/it]
40402
  45%|████▌ | 75/166 [08:42<09:59, 6.59s/it]
40403
  46%|████▌ | 76/166 [08:49<10:09, 6.77s/it]
40404
  46%|████▋ | 77/166 [08:55<09:36, 6.48s/it]
40405
  47%|████▋ | 78/166 [09:02<09:46, 6.66s/it]
40406
  48%|████▊ | 79/166 [09:10<10:12, 7.04s/it]
40407
  48%|████▊ | 80/166 [09:18<10:37, 7.41s/it]
40408
  49%|████▉ | 81/166 [09:26<10:39, 7.53s/it]
40409
  49%|████▉ | 82/166 [09:33<10:16, 7.34s/it]
40410
  50%|█████ | 83/166 [09:38<09:19, 6.74s/it]
40411
  51%|█████ | 84/166 [09:45<09:03, 6.63s/it]
40412
  51%|█████ | 85/166 [09:52<09:11, 6.81s/it]
40413
  52%|█████▏ | 86/166 [10:00<09:41, 7.27s/it]
40414
  52%|█████▏ | 87/166 [10:08<09:41, 7.36s/it]
40415
  53%|█████▎ | 88/166 [10:15<09:18, 7.16s/it]
40416
  54%|█████▎ | 89/166 [10:22<09:14, 7.20s/it]
40417
  54%|█████▍ | 90/166 [10:28<08:51, 7.00s/it]
40418
  55%|█████▍ | 91/166 [10:35<08:36, 6.89s/it]
40419
  55%|█████▌ | 92/166 [10:41<08:08, 6.60s/it]
40420
  56%|█████▌ | 93/166 [10:49<08:34, 7.04s/it]
40421
  57%|█████▋ | 94/166 [10:59<09:34, 7.98s/it]
40422
  57%|█████▋ | 95/166 [11:04<08:28, 7.16s/it]
40423
  58%|█████▊ | 96/166 [11:11<08:06, 6.95s/it]
40424
  58%|█████▊ | 97/166 [11:21<09:06, 7.92s/it]
40425
  59%|█████▉ | 98/166 [11:31<09:38, 8.50s/it]
40426
  60%|█████▉ | 99/166 [11:38<09:08, 8.18s/it]
40427
  60%|██████ | 100/166 [11:45<08:20, 7.59s/it]
40428
  61%|██████ | 101/166 [11:51<07:52, 7.27s/it]
40429
  61%|██████▏ | 102/166 [12:00<08:15, 7.74s/it]
40430
  62%|██████▏ | 103/166 [12:09<08:30, 8.10s/it]
40431
  63%|██████▎ | 104/166 [12:16<08:05, 7.83s/it]
40432
  63%|██████▎ | 105/166 [12:24<08:03, 7.92s/it]
40433
  64%|██████▍ | 106/166 [12:34<08:29, 8.49s/it]
40434
  64%|██████▍ | 107/166 [12:44<08:40, 8.82s/it]
40435
  65%|██████▌ | 108/166 [12:49<07:32, 7.81s/it]
40436
  66%|██████▌ | 109/166 [12:55<07:00, 7.37s/it]
40437
  66%|██████▋ | 110/166 [13:03<06:53, 7.39s/it]
40438
  67%|██████▋ | 111/166 [13:09<06:23, 6.97s/it]
40439
  67%|██████▋ | 112/166 [13:16<06:20, 7.06s/it]
40440
  68%|██████▊ | 113/166 [13:25<06:38, 7.52s/it]
40441
  69%|██████▊ | 114/166 [13:32<06:29, 7.49s/it]
40442
  69%|██████▉ | 115/166 [13:38<06:03, 7.13s/it]
40443
  70%|██████▉ | 116/166 [13:45<05:43, 6.87s/it]
40444
  70%|███████ | 117/166 [13:52<05:45, 7.06s/it]
40445
  71%|███████ | 118/166 [14:00<05:48, 7.27s/it]
40446
  72%|███████▏ | 119/166 [14:08<05:47, 7.39s/it]
40447
  72%|███████▏ | 120/166 [14:16<05:51, 7.64s/it]
40448
  73%|███████▎ | 121/166 [14:24<05:52, 7.84s/it]
40449
  73%|███████▎ | 122/166 [14:32<05:42, 7.78s/it]
40450
  74%|███████▍ | 123/166 [14:39<05:27, 7.62s/it]
40451
  75%|███████▍ | 124/166 [14:46<05:08, 7.34s/it]
40452
  75%|███████▌ | 125/166 [14:53<05:02, 7.37s/it]
40453
  76%|███████▌ | 126/166 [15:02<05:07, 7.70s/it]
40454
  77%|███████▋ | 127/166 [15:07<04:28, 6.88s/it]
40455
  77%|███████▋ | 128/166 [15:17<04:58, 7.84s/it]
40456
  78%|███████▊ | 129/166 [15:25<04:50, 7.86s/it]
40457
  78%|███████▊ | 130/166 [15:31<04:32, 7.56s/it]
40458
  79%|███████▉ | 131/166 [15:38<04:18, 7.40s/it]
40459
  80%|███████▉ | 132/166 [15:47<04:19, 7.62s/it]
40460
  80%|████████ | 133/166 [15:54<04:12, 7.64s/it]
40461
  81%|████████ | 134/166 [16:01<03:53, 7.30s/it]
40462
  81%|████████▏ | 135/166 [16:07<03:35, 6.95s/it]
40463
  82%|████████▏ | 136/166 [16:17<04:00, 8.00s/it]
40464
  83%|████████▎ | 137/166 [16:26<04:00, 8.30s/it]
40465
  83%|████████▎ | 138/166 [16:36<04:07, 8.83s/it]
40466
  84%|████████▎ | 139/166 [16:45<03:53, 8.66s/it]
40467
  84%|████████▍ | 140/166 [16:51<03:26, 7.95s/it]
40468
  85%|████████▍ | 141/166 [16:57<03:03, 7.34s/it]
40469
  86%|████████▌ | 142/166 [17:04<02:54, 7.28s/it]
40470
  86%|████████▌ | 143/166 [17:10<02:35, 6.75s/it]
40471
  87%|████████▋ | 144/166 [17:18<02:41, 7.36s/it]
40472
  87%|████████▋ | 145/166 [17:28<02:49, 8.07s/it]
40473
  88%|████████▊ | 146/166 [17:37<02:48, 8.44s/it]
40474
  89%|████████▊ | 147/166 [17:46<02:40, 8.43s/it]
40475
  89%|████████▉ | 148/166 [17:54<02:31, 8.42s/it]
40476
  90%|████████▉ | 149/166 [18:03<02:26, 8.65s/it]
40477
  90%|████��████ | 150/166 [18:13<02:23, 8.99s/it]
40478
  91%|█████████ | 151/166 [18:21<02:10, 8.70s/it]
40479
  92%|█████████▏| 152/166 [18:27<01:49, 7.82s/it]
40480
  92%|█████████▏| 153/166 [18:33<01:36, 7.41s/it]
40481
  93%|█████████▎| 154/166 [18:41<01:28, 7.38s/it]
40482
  93%|█████████▎| 155/166 [18:48<01:22, 7.49s/it]
40483
  94%|█████████▍| 156/166 [18:54<01:10, 7.01s/it]
40484
  95%|█████████▍| 157/166 [19:01<01:02, 6.91s/it]
40485
  95%|█████████▌| 158/166 [19:07<00:52, 6.52s/it]
40486
  96%|█████████▌| 159/166 [19:11<00:41, 5.98s/it]
40487
  96%|█████████▋| 160/166 [19:16<00:34, 5.70s/it]
40488
  97%|█████████▋| 161/166 [19:22<00:29, 5.81s/it]
40489
  98%|█████████▊| 162/166 [19:29<00:24, 6.13s/it]
40490
  98%|█████████▊| 163/166 [19:36<00:19, 6.43s/it]
40491
  99%|█████████▉| 164/166 [19:43<00:12, 6.34s/it]
40492
  99%|█████████▉| 165/166 [19:48<00:06, 6.22s/it]
40493
+ ***** eval metrics *****
40494
+ epoch = 121.94
40495
+ eval_loss = 0.2563
40496
+ eval_runtime = 0:21:07.18
40497
+ eval_samples_per_second = 1.046
40498
+ eval_steps_per_second = 0.131
40499
+ eval_wer = 8.3774
40500
+ [INFO|trainer.py:2700] 2022-12-21 04:15:55,919 >> Saving model checkpoint to ./
40501
+ [INFO|configuration_utils.py:447] 2022-12-21 04:15:55,920 >> Configuration saved in ./config.json
40502
+ [INFO|modeling_utils.py:1680] 2022-12-21 04:16:00,242 >> Model weights saved in ./pytorch_model.bin
40503
+ [INFO|feature_extraction_utils.py:368] 2022-12-21 04:16:00,258 >> Feature extractor saved in ./preprocessor_config.json
runs/Dec20_10-12-02_129-146-123-136/events.out.tfevents.1671596155.129-146-123-136.3808886.2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef807762f120a5452210127ba7d294615a058a94e96c8b04190555d7ae2dece8
3
+ size 358
train_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 121.94,
3
+ "train_loss": 0.00465274755358696,
4
+ "train_runtime": 62864.0618,
5
+ "train_samples_per_second": 5.09,
6
+ "train_steps_per_second": 0.08
7
+ }
trainer_state.json ADDED
@@ -0,0 +1,1270 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 8.37737794884072,
3
+ "best_model_checkpoint": "./checkpoint-2000",
4
+ "epoch": 121.93975903614458,
5
+ "global_step": 5000,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.6,
12
+ "learning_rate": 5.113844316514203e-06,
13
+ "loss": 0.2509,
14
+ "step": 25
15
+ },
16
+ {
17
+ "epoch": 1.22,
18
+ "learning_rate": 6.229195710491767e-06,
19
+ "loss": 0.1429,
20
+ "step": 50
21
+ },
22
+ {
23
+ "epoch": 1.82,
24
+ "learning_rate": 6.903829450223392e-06,
25
+ "loss": 0.0992,
26
+ "step": 75
27
+ },
28
+ {
29
+ "epoch": 2.43,
30
+ "learning_rate": 7.394062147380189e-06,
31
+ "loss": 0.0708,
32
+ "step": 100
33
+ },
34
+ {
35
+ "epoch": 3.05,
36
+ "learning_rate": 7.756372548783638e-06,
37
+ "loss": 0.0552,
38
+ "step": 125
39
+ },
40
+ {
41
+ "epoch": 3.65,
42
+ "learning_rate": 8.051909672656425e-06,
43
+ "loss": 0.0337,
44
+ "step": 150
45
+ },
46
+ {
47
+ "epoch": 4.27,
48
+ "learning_rate": 8.310718700403308e-06,
49
+ "loss": 0.0294,
50
+ "step": 175
51
+ },
52
+ {
53
+ "epoch": 4.87,
54
+ "learning_rate": 8.517519915806749e-06,
55
+ "loss": 0.0227,
56
+ "step": 200
57
+ },
58
+ {
59
+ "epoch": 5.48,
60
+ "learning_rate": 8.707944195594548e-06,
61
+ "loss": 0.019,
62
+ "step": 225
63
+ },
64
+ {
65
+ "epoch": 6.1,
66
+ "learning_rate": 8.884648606022435e-06,
67
+ "loss": 0.0167,
68
+ "step": 250
69
+ },
70
+ {
71
+ "epoch": 6.7,
72
+ "learning_rate": 9.038013352913754e-06,
73
+ "loss": 0.012,
74
+ "step": 275
75
+ },
76
+ {
77
+ "epoch": 7.31,
78
+ "learning_rate": 9.178024397233219e-06,
79
+ "loss": 0.0109,
80
+ "step": 300
81
+ },
82
+ {
83
+ "epoch": 7.92,
84
+ "learning_rate": 9.306822072655195e-06,
85
+ "loss": 0.0094,
86
+ "step": 325
87
+ },
88
+ {
89
+ "epoch": 8.53,
90
+ "learning_rate": 9.430661001703139e-06,
91
+ "loss": 0.0086,
92
+ "step": 350
93
+ },
94
+ {
95
+ "epoch": 9.14,
96
+ "learning_rate": 9.541372600623587e-06,
97
+ "loss": 0.0094,
98
+ "step": 375
99
+ },
100
+ {
101
+ "epoch": 9.75,
102
+ "learning_rate": 9.644954810309533e-06,
103
+ "loss": 0.0076,
104
+ "step": 400
105
+ },
106
+ {
107
+ "epoch": 10.36,
108
+ "learning_rate": 9.746043382472281e-06,
109
+ "loss": 0.0072,
110
+ "step": 425
111
+ },
112
+ {
113
+ "epoch": 10.96,
114
+ "learning_rate": 9.837598900861371e-06,
115
+ "loss": 0.0065,
116
+ "step": 450
117
+ },
118
+ {
119
+ "epoch": 11.58,
120
+ "learning_rate": 9.924224332752688e-06,
121
+ "loss": 0.0052,
122
+ "step": 475
123
+ },
124
+ {
125
+ "epoch": 12.19,
126
+ "learning_rate": 9.995555555555556e-06,
127
+ "loss": 0.0053,
128
+ "step": 500
129
+ },
130
+ {
131
+ "epoch": 12.8,
132
+ "learning_rate": 9.940000000000001e-06,
133
+ "loss": 0.0038,
134
+ "step": 525
135
+ },
136
+ {
137
+ "epoch": 13.41,
138
+ "learning_rate": 9.884444444444445e-06,
139
+ "loss": 0.0038,
140
+ "step": 550
141
+ },
142
+ {
143
+ "epoch": 14.02,
144
+ "learning_rate": 9.826666666666667e-06,
145
+ "loss": 0.004,
146
+ "step": 575
147
+ },
148
+ {
149
+ "epoch": 14.63,
150
+ "learning_rate": 9.771111111111113e-06,
151
+ "loss": 0.0037,
152
+ "step": 600
153
+ },
154
+ {
155
+ "epoch": 15.24,
156
+ "learning_rate": 9.715555555555557e-06,
157
+ "loss": 0.0047,
158
+ "step": 625
159
+ },
160
+ {
161
+ "epoch": 15.84,
162
+ "learning_rate": 9.66e-06,
163
+ "loss": 0.0047,
164
+ "step": 650
165
+ },
166
+ {
167
+ "epoch": 16.46,
168
+ "learning_rate": 9.602222222222222e-06,
169
+ "loss": 0.0045,
170
+ "step": 675
171
+ },
172
+ {
173
+ "epoch": 17.07,
174
+ "learning_rate": 9.546666666666668e-06,
175
+ "loss": 0.0044,
176
+ "step": 700
177
+ },
178
+ {
179
+ "epoch": 17.67,
180
+ "learning_rate": 9.491111111111112e-06,
181
+ "loss": 0.0031,
182
+ "step": 725
183
+ },
184
+ {
185
+ "epoch": 18.29,
186
+ "learning_rate": 9.433333333333335e-06,
187
+ "loss": 0.0032,
188
+ "step": 750
189
+ },
190
+ {
191
+ "epoch": 18.89,
192
+ "learning_rate": 9.377777777777779e-06,
193
+ "loss": 0.0024,
194
+ "step": 775
195
+ },
196
+ {
197
+ "epoch": 19.51,
198
+ "learning_rate": 9.322222222222223e-06,
199
+ "loss": 0.0023,
200
+ "step": 800
201
+ },
202
+ {
203
+ "epoch": 20.12,
204
+ "learning_rate": 9.264444444444445e-06,
205
+ "loss": 0.0025,
206
+ "step": 825
207
+ },
208
+ {
209
+ "epoch": 20.72,
210
+ "learning_rate": 9.208888888888889e-06,
211
+ "loss": 0.0025,
212
+ "step": 850
213
+ },
214
+ {
215
+ "epoch": 21.34,
216
+ "learning_rate": 9.153333333333334e-06,
217
+ "loss": 0.0025,
218
+ "step": 875
219
+ },
220
+ {
221
+ "epoch": 21.94,
222
+ "learning_rate": 9.097777777777778e-06,
223
+ "loss": 0.0022,
224
+ "step": 900
225
+ },
226
+ {
227
+ "epoch": 22.55,
228
+ "learning_rate": 9.040000000000002e-06,
229
+ "loss": 0.002,
230
+ "step": 925
231
+ },
232
+ {
233
+ "epoch": 23.17,
234
+ "learning_rate": 8.984444444444446e-06,
235
+ "loss": 0.002,
236
+ "step": 950
237
+ },
238
+ {
239
+ "epoch": 23.77,
240
+ "learning_rate": 8.92888888888889e-06,
241
+ "loss": 0.0021,
242
+ "step": 975
243
+ },
244
+ {
245
+ "epoch": 24.39,
246
+ "learning_rate": 8.871111111111111e-06,
247
+ "loss": 0.0022,
248
+ "step": 1000
249
+ },
250
+ {
251
+ "epoch": 24.39,
252
+ "eval_loss": 0.2181396484375,
253
+ "eval_runtime": 1286.5853,
254
+ "eval_samples_per_second": 1.03,
255
+ "eval_steps_per_second": 0.129,
256
+ "eval_wer": 8.780685438573874,
257
+ "step": 1000
258
+ },
259
+ {
260
+ "epoch": 24.99,
261
+ "learning_rate": 8.815555555555557e-06,
262
+ "loss": 0.003,
263
+ "step": 1025
264
+ },
265
+ {
266
+ "epoch": 25.6,
267
+ "learning_rate": 8.76e-06,
268
+ "loss": 0.0027,
269
+ "step": 1050
270
+ },
271
+ {
272
+ "epoch": 26.22,
273
+ "learning_rate": 8.702222222222222e-06,
274
+ "loss": 0.0025,
275
+ "step": 1075
276
+ },
277
+ {
278
+ "epoch": 26.82,
279
+ "learning_rate": 8.646666666666668e-06,
280
+ "loss": 0.0019,
281
+ "step": 1100
282
+ },
283
+ {
284
+ "epoch": 27.43,
285
+ "learning_rate": 8.591111111111112e-06,
286
+ "loss": 0.0021,
287
+ "step": 1125
288
+ },
289
+ {
290
+ "epoch": 28.05,
291
+ "learning_rate": 8.533333333333335e-06,
292
+ "loss": 0.0018,
293
+ "step": 1150
294
+ },
295
+ {
296
+ "epoch": 28.65,
297
+ "learning_rate": 8.477777777777778e-06,
298
+ "loss": 0.0015,
299
+ "step": 1175
300
+ },
301
+ {
302
+ "epoch": 29.27,
303
+ "learning_rate": 8.422222222222223e-06,
304
+ "loss": 0.0012,
305
+ "step": 1200
306
+ },
307
+ {
308
+ "epoch": 29.87,
309
+ "learning_rate": 8.366666666666667e-06,
310
+ "loss": 0.0011,
311
+ "step": 1225
312
+ },
313
+ {
314
+ "epoch": 30.48,
315
+ "learning_rate": 8.30888888888889e-06,
316
+ "loss": 0.0009,
317
+ "step": 1250
318
+ },
319
+ {
320
+ "epoch": 31.1,
321
+ "learning_rate": 8.253333333333334e-06,
322
+ "loss": 0.0011,
323
+ "step": 1275
324
+ },
325
+ {
326
+ "epoch": 31.7,
327
+ "learning_rate": 8.197777777777779e-06,
328
+ "loss": 0.0008,
329
+ "step": 1300
330
+ },
331
+ {
332
+ "epoch": 32.31,
333
+ "learning_rate": 8.14e-06,
334
+ "loss": 0.0006,
335
+ "step": 1325
336
+ },
337
+ {
338
+ "epoch": 32.92,
339
+ "learning_rate": 8.084444444444444e-06,
340
+ "loss": 0.0006,
341
+ "step": 1350
342
+ },
343
+ {
344
+ "epoch": 33.53,
345
+ "learning_rate": 8.02888888888889e-06,
346
+ "loss": 0.0006,
347
+ "step": 1375
348
+ },
349
+ {
350
+ "epoch": 34.14,
351
+ "learning_rate": 7.971111111111111e-06,
352
+ "loss": 0.001,
353
+ "step": 1400
354
+ },
355
+ {
356
+ "epoch": 34.75,
357
+ "learning_rate": 7.915555555555557e-06,
358
+ "loss": 0.0009,
359
+ "step": 1425
360
+ },
361
+ {
362
+ "epoch": 35.36,
363
+ "learning_rate": 7.860000000000001e-06,
364
+ "loss": 0.0007,
365
+ "step": 1450
366
+ },
367
+ {
368
+ "epoch": 35.96,
369
+ "learning_rate": 7.804444444444445e-06,
370
+ "loss": 0.0006,
371
+ "step": 1475
372
+ },
373
+ {
374
+ "epoch": 36.58,
375
+ "learning_rate": 7.746666666666666e-06,
376
+ "loss": 0.0005,
377
+ "step": 1500
378
+ },
379
+ {
380
+ "epoch": 37.19,
381
+ "learning_rate": 7.691111111111112e-06,
382
+ "loss": 0.0004,
383
+ "step": 1525
384
+ },
385
+ {
386
+ "epoch": 37.8,
387
+ "learning_rate": 7.635555555555556e-06,
388
+ "loss": 0.0004,
389
+ "step": 1550
390
+ },
391
+ {
392
+ "epoch": 38.41,
393
+ "learning_rate": 7.5777777777777785e-06,
394
+ "loss": 0.0004,
395
+ "step": 1575
396
+ },
397
+ {
398
+ "epoch": 39.02,
399
+ "learning_rate": 7.5222222222222226e-06,
400
+ "loss": 0.0003,
401
+ "step": 1600
402
+ },
403
+ {
404
+ "epoch": 39.63,
405
+ "learning_rate": 7.4666666666666675e-06,
406
+ "loss": 0.0003,
407
+ "step": 1625
408
+ },
409
+ {
410
+ "epoch": 40.24,
411
+ "learning_rate": 7.40888888888889e-06,
412
+ "loss": 0.0003,
413
+ "step": 1650
414
+ },
415
+ {
416
+ "epoch": 40.84,
417
+ "learning_rate": 7.353333333333334e-06,
418
+ "loss": 0.0003,
419
+ "step": 1675
420
+ },
421
+ {
422
+ "epoch": 41.46,
423
+ "learning_rate": 7.297777777777778e-06,
424
+ "loss": 0.0003,
425
+ "step": 1700
426
+ },
427
+ {
428
+ "epoch": 42.07,
429
+ "learning_rate": 7.24e-06,
430
+ "loss": 0.0003,
431
+ "step": 1725
432
+ },
433
+ {
434
+ "epoch": 42.67,
435
+ "learning_rate": 7.184444444444445e-06,
436
+ "loss": 0.0003,
437
+ "step": 1750
438
+ },
439
+ {
440
+ "epoch": 43.29,
441
+ "learning_rate": 7.12888888888889e-06,
442
+ "loss": 0.0003,
443
+ "step": 1775
444
+ },
445
+ {
446
+ "epoch": 43.89,
447
+ "learning_rate": 7.073333333333334e-06,
448
+ "loss": 0.0003,
449
+ "step": 1800
450
+ },
451
+ {
452
+ "epoch": 44.51,
453
+ "learning_rate": 7.015555555555556e-06,
454
+ "loss": 0.0003,
455
+ "step": 1825
456
+ },
457
+ {
458
+ "epoch": 45.12,
459
+ "learning_rate": 6.96e-06,
460
+ "loss": 0.0003,
461
+ "step": 1850
462
+ },
463
+ {
464
+ "epoch": 45.72,
465
+ "learning_rate": 6.904444444444444e-06,
466
+ "loss": 0.0002,
467
+ "step": 1875
468
+ },
469
+ {
470
+ "epoch": 46.34,
471
+ "learning_rate": 6.846666666666667e-06,
472
+ "loss": 0.0002,
473
+ "step": 1900
474
+ },
475
+ {
476
+ "epoch": 46.94,
477
+ "learning_rate": 6.7911111111111115e-06,
478
+ "loss": 0.0002,
479
+ "step": 1925
480
+ },
481
+ {
482
+ "epoch": 47.55,
483
+ "learning_rate": 6.735555555555556e-06,
484
+ "loss": 0.0002,
485
+ "step": 1950
486
+ },
487
+ {
488
+ "epoch": 48.17,
489
+ "learning_rate": 6.677777777777779e-06,
490
+ "loss": 0.0002,
491
+ "step": 1975
492
+ },
493
+ {
494
+ "epoch": 48.77,
495
+ "learning_rate": 6.6222222222222236e-06,
496
+ "loss": 0.0002,
497
+ "step": 2000
498
+ },
499
+ {
500
+ "epoch": 48.77,
501
+ "eval_loss": 0.25634765625,
502
+ "eval_runtime": 1289.0888,
503
+ "eval_samples_per_second": 1.028,
504
+ "eval_steps_per_second": 0.129,
505
+ "eval_wer": 8.37737794884072,
506
+ "step": 2000
507
+ },
508
+ {
509
+ "epoch": 49.39,
510
+ "learning_rate": 6.566666666666667e-06,
511
+ "loss": 0.0002,
512
+ "step": 2025
513
+ },
514
+ {
515
+ "epoch": 49.99,
516
+ "learning_rate": 6.511111111111112e-06,
517
+ "loss": 0.0002,
518
+ "step": 2050
519
+ },
520
+ {
521
+ "epoch": 50.6,
522
+ "learning_rate": 6.453333333333334e-06,
523
+ "loss": 0.0002,
524
+ "step": 2075
525
+ },
526
+ {
527
+ "epoch": 51.22,
528
+ "learning_rate": 6.397777777777778e-06,
529
+ "loss": 0.0002,
530
+ "step": 2100
531
+ },
532
+ {
533
+ "epoch": 51.82,
534
+ "learning_rate": 6.342222222222223e-06,
535
+ "loss": 0.0002,
536
+ "step": 2125
537
+ },
538
+ {
539
+ "epoch": 52.43,
540
+ "learning_rate": 6.284444444444445e-06,
541
+ "loss": 0.0002,
542
+ "step": 2150
543
+ },
544
+ {
545
+ "epoch": 53.05,
546
+ "learning_rate": 6.22888888888889e-06,
547
+ "loss": 0.0002,
548
+ "step": 2175
549
+ },
550
+ {
551
+ "epoch": 53.65,
552
+ "learning_rate": 6.173333333333333e-06,
553
+ "loss": 0.0002,
554
+ "step": 2200
555
+ },
556
+ {
557
+ "epoch": 54.27,
558
+ "learning_rate": 6.1155555555555555e-06,
559
+ "loss": 0.0002,
560
+ "step": 2225
561
+ },
562
+ {
563
+ "epoch": 54.87,
564
+ "learning_rate": 6.0600000000000004e-06,
565
+ "loss": 0.0002,
566
+ "step": 2250
567
+ },
568
+ {
569
+ "epoch": 55.48,
570
+ "learning_rate": 6.004444444444445e-06,
571
+ "loss": 0.0002,
572
+ "step": 2275
573
+ },
574
+ {
575
+ "epoch": 56.1,
576
+ "learning_rate": 5.946666666666668e-06,
577
+ "loss": 0.0002,
578
+ "step": 2300
579
+ },
580
+ {
581
+ "epoch": 56.7,
582
+ "learning_rate": 5.891111111111112e-06,
583
+ "loss": 0.0002,
584
+ "step": 2325
585
+ },
586
+ {
587
+ "epoch": 57.31,
588
+ "learning_rate": 5.8355555555555565e-06,
589
+ "loss": 0.0002,
590
+ "step": 2350
591
+ },
592
+ {
593
+ "epoch": 57.92,
594
+ "learning_rate": 5.78e-06,
595
+ "loss": 0.0002,
596
+ "step": 2375
597
+ },
598
+ {
599
+ "epoch": 58.53,
600
+ "learning_rate": 5.722222222222222e-06,
601
+ "loss": 0.0002,
602
+ "step": 2400
603
+ },
604
+ {
605
+ "epoch": 59.14,
606
+ "learning_rate": 5.666666666666667e-06,
607
+ "loss": 0.0002,
608
+ "step": 2425
609
+ },
610
+ {
611
+ "epoch": 59.75,
612
+ "learning_rate": 5.611111111111112e-06,
613
+ "loss": 0.0002,
614
+ "step": 2450
615
+ },
616
+ {
617
+ "epoch": 60.36,
618
+ "learning_rate": 5.553333333333334e-06,
619
+ "loss": 0.0002,
620
+ "step": 2475
621
+ },
622
+ {
623
+ "epoch": 60.96,
624
+ "learning_rate": 5.497777777777778e-06,
625
+ "loss": 0.0002,
626
+ "step": 2500
627
+ },
628
+ {
629
+ "epoch": 61.58,
630
+ "learning_rate": 5.442222222222223e-06,
631
+ "loss": 0.0002,
632
+ "step": 2525
633
+ },
634
+ {
635
+ "epoch": 62.19,
636
+ "learning_rate": 5.3844444444444445e-06,
637
+ "loss": 0.0002,
638
+ "step": 2550
639
+ },
640
+ {
641
+ "epoch": 62.8,
642
+ "learning_rate": 5.328888888888889e-06,
643
+ "loss": 0.0001,
644
+ "step": 2575
645
+ },
646
+ {
647
+ "epoch": 63.41,
648
+ "learning_rate": 5.273333333333333e-06,
649
+ "loss": 0.0001,
650
+ "step": 2600
651
+ },
652
+ {
653
+ "epoch": 64.02,
654
+ "learning_rate": 5.215555555555556e-06,
655
+ "loss": 0.0001,
656
+ "step": 2625
657
+ },
658
+ {
659
+ "epoch": 64.63,
660
+ "learning_rate": 5.1600000000000006e-06,
661
+ "loss": 0.0001,
662
+ "step": 2650
663
+ },
664
+ {
665
+ "epoch": 65.24,
666
+ "learning_rate": 5.1044444444444455e-06,
667
+ "loss": 0.0001,
668
+ "step": 2675
669
+ },
670
+ {
671
+ "epoch": 65.84,
672
+ "learning_rate": 5.0488888888888895e-06,
673
+ "loss": 0.0001,
674
+ "step": 2700
675
+ },
676
+ {
677
+ "epoch": 66.46,
678
+ "learning_rate": 4.991111111111112e-06,
679
+ "loss": 0.0001,
680
+ "step": 2725
681
+ },
682
+ {
683
+ "epoch": 67.07,
684
+ "learning_rate": 4.935555555555556e-06,
685
+ "loss": 0.0001,
686
+ "step": 2750
687
+ },
688
+ {
689
+ "epoch": 67.67,
690
+ "learning_rate": 4.880000000000001e-06,
691
+ "loss": 0.0001,
692
+ "step": 2775
693
+ },
694
+ {
695
+ "epoch": 68.29,
696
+ "learning_rate": 4.822222222222222e-06,
697
+ "loss": 0.0001,
698
+ "step": 2800
699
+ },
700
+ {
701
+ "epoch": 68.89,
702
+ "learning_rate": 4.766666666666667e-06,
703
+ "loss": 0.0001,
704
+ "step": 2825
705
+ },
706
+ {
707
+ "epoch": 69.51,
708
+ "learning_rate": 4.711111111111111e-06,
709
+ "loss": 0.0001,
710
+ "step": 2850
711
+ },
712
+ {
713
+ "epoch": 70.12,
714
+ "learning_rate": 4.653333333333333e-06,
715
+ "loss": 0.0001,
716
+ "step": 2875
717
+ },
718
+ {
719
+ "epoch": 70.72,
720
+ "learning_rate": 4.597777777777778e-06,
721
+ "loss": 0.0001,
722
+ "step": 2900
723
+ },
724
+ {
725
+ "epoch": 71.34,
726
+ "learning_rate": 4.542222222222223e-06,
727
+ "loss": 0.0001,
728
+ "step": 2925
729
+ },
730
+ {
731
+ "epoch": 71.94,
732
+ "learning_rate": 4.486666666666667e-06,
733
+ "loss": 0.0001,
734
+ "step": 2950
735
+ },
736
+ {
737
+ "epoch": 72.55,
738
+ "learning_rate": 4.4288888888888895e-06,
739
+ "loss": 0.0001,
740
+ "step": 2975
741
+ },
742
+ {
743
+ "epoch": 73.17,
744
+ "learning_rate": 4.3733333333333335e-06,
745
+ "loss": 0.0001,
746
+ "step": 3000
747
+ },
748
+ {
749
+ "epoch": 73.17,
750
+ "eval_loss": 0.275634765625,
751
+ "eval_runtime": 1273.9374,
752
+ "eval_samples_per_second": 1.04,
753
+ "eval_steps_per_second": 0.13,
754
+ "eval_wer": 8.451041417285133,
755
+ "step": 3000
756
+ },
757
+ {
758
+ "epoch": 73.77,
759
+ "learning_rate": 4.3177777777777776e-06,
760
+ "loss": 0.0001,
761
+ "step": 3025
762
+ },
763
+ {
764
+ "epoch": 74.39,
765
+ "learning_rate": 4.26e-06,
766
+ "loss": 0.0001,
767
+ "step": 3050
768
+ },
769
+ {
770
+ "epoch": 74.99,
771
+ "learning_rate": 4.204444444444445e-06,
772
+ "loss": 0.0001,
773
+ "step": 3075
774
+ },
775
+ {
776
+ "epoch": 75.6,
777
+ "learning_rate": 4.148888888888889e-06,
778
+ "loss": 0.0001,
779
+ "step": 3100
780
+ },
781
+ {
782
+ "epoch": 76.22,
783
+ "learning_rate": 4.091111111111111e-06,
784
+ "loss": 0.0001,
785
+ "step": 3125
786
+ },
787
+ {
788
+ "epoch": 76.82,
789
+ "learning_rate": 4.04e-06,
790
+ "loss": 0.0001,
791
+ "step": 3150
792
+ },
793
+ {
794
+ "epoch": 77.43,
795
+ "learning_rate": 3.984444444444444e-06,
796
+ "loss": 0.0001,
797
+ "step": 3175
798
+ },
799
+ {
800
+ "epoch": 78.05,
801
+ "learning_rate": 3.926666666666667e-06,
802
+ "loss": 0.0001,
803
+ "step": 3200
804
+ },
805
+ {
806
+ "epoch": 78.65,
807
+ "learning_rate": 3.8711111111111115e-06,
808
+ "loss": 0.0001,
809
+ "step": 3225
810
+ },
811
+ {
812
+ "epoch": 79.27,
813
+ "learning_rate": 3.8155555555555555e-06,
814
+ "loss": 0.0001,
815
+ "step": 3250
816
+ },
817
+ {
818
+ "epoch": 79.87,
819
+ "learning_rate": 3.7600000000000004e-06,
820
+ "loss": 0.0001,
821
+ "step": 3275
822
+ },
823
+ {
824
+ "epoch": 80.48,
825
+ "learning_rate": 3.7022222222222227e-06,
826
+ "loss": 0.0001,
827
+ "step": 3300
828
+ },
829
+ {
830
+ "epoch": 81.1,
831
+ "learning_rate": 3.6466666666666668e-06,
832
+ "loss": 0.0001,
833
+ "step": 3325
834
+ },
835
+ {
836
+ "epoch": 81.7,
837
+ "learning_rate": 3.5911111111111112e-06,
838
+ "loss": 0.0001,
839
+ "step": 3350
840
+ },
841
+ {
842
+ "epoch": 82.31,
843
+ "learning_rate": 3.5333333333333335e-06,
844
+ "loss": 0.0001,
845
+ "step": 3375
846
+ },
847
+ {
848
+ "epoch": 82.92,
849
+ "learning_rate": 3.4777777777777784e-06,
850
+ "loss": 0.0001,
851
+ "step": 3400
852
+ },
853
+ {
854
+ "epoch": 83.53,
855
+ "learning_rate": 3.4222222222222224e-06,
856
+ "loss": 0.0001,
857
+ "step": 3425
858
+ },
859
+ {
860
+ "epoch": 84.14,
861
+ "learning_rate": 3.3644444444444447e-06,
862
+ "loss": 0.0001,
863
+ "step": 3450
864
+ },
865
+ {
866
+ "epoch": 84.75,
867
+ "learning_rate": 3.308888888888889e-06,
868
+ "loss": 0.0001,
869
+ "step": 3475
870
+ },
871
+ {
872
+ "epoch": 85.36,
873
+ "learning_rate": 3.2533333333333332e-06,
874
+ "loss": 0.0001,
875
+ "step": 3500
876
+ },
877
+ {
878
+ "epoch": 85.96,
879
+ "learning_rate": 3.197777777777778e-06,
880
+ "loss": 0.0001,
881
+ "step": 3525
882
+ },
883
+ {
884
+ "epoch": 86.58,
885
+ "learning_rate": 3.1400000000000004e-06,
886
+ "loss": 0.0001,
887
+ "step": 3550
888
+ },
889
+ {
890
+ "epoch": 87.19,
891
+ "learning_rate": 3.084444444444445e-06,
892
+ "loss": 0.0001,
893
+ "step": 3575
894
+ },
895
+ {
896
+ "epoch": 87.8,
897
+ "learning_rate": 3.028888888888889e-06,
898
+ "loss": 0.0001,
899
+ "step": 3600
900
+ },
901
+ {
902
+ "epoch": 88.41,
903
+ "learning_rate": 2.9711111111111112e-06,
904
+ "loss": 0.0001,
905
+ "step": 3625
906
+ },
907
+ {
908
+ "epoch": 89.02,
909
+ "learning_rate": 2.915555555555556e-06,
910
+ "loss": 0.0001,
911
+ "step": 3650
912
+ },
913
+ {
914
+ "epoch": 89.63,
915
+ "learning_rate": 2.86e-06,
916
+ "loss": 0.0001,
917
+ "step": 3675
918
+ },
919
+ {
920
+ "epoch": 90.24,
921
+ "learning_rate": 2.8022222222222225e-06,
922
+ "loss": 0.0001,
923
+ "step": 3700
924
+ },
925
+ {
926
+ "epoch": 90.84,
927
+ "learning_rate": 2.746666666666667e-06,
928
+ "loss": 0.0001,
929
+ "step": 3725
930
+ },
931
+ {
932
+ "epoch": 91.46,
933
+ "learning_rate": 2.6911111111111114e-06,
934
+ "loss": 0.0001,
935
+ "step": 3750
936
+ },
937
+ {
938
+ "epoch": 92.07,
939
+ "learning_rate": 2.6333333333333332e-06,
940
+ "loss": 0.0001,
941
+ "step": 3775
942
+ },
943
+ {
944
+ "epoch": 92.67,
945
+ "learning_rate": 2.577777777777778e-06,
946
+ "loss": 0.0001,
947
+ "step": 3800
948
+ },
949
+ {
950
+ "epoch": 93.29,
951
+ "learning_rate": 2.5222222222222226e-06,
952
+ "loss": 0.0001,
953
+ "step": 3825
954
+ },
955
+ {
956
+ "epoch": 93.89,
957
+ "learning_rate": 2.466666666666667e-06,
958
+ "loss": 0.0001,
959
+ "step": 3850
960
+ },
961
+ {
962
+ "epoch": 94.51,
963
+ "learning_rate": 2.4088888888888894e-06,
964
+ "loss": 0.0001,
965
+ "step": 3875
966
+ },
967
+ {
968
+ "epoch": 95.12,
969
+ "learning_rate": 2.3533333333333334e-06,
970
+ "loss": 0.0001,
971
+ "step": 3900
972
+ },
973
+ {
974
+ "epoch": 95.72,
975
+ "learning_rate": 2.297777777777778e-06,
976
+ "loss": 0.0001,
977
+ "step": 3925
978
+ },
979
+ {
980
+ "epoch": 96.34,
981
+ "learning_rate": 2.24e-06,
982
+ "loss": 0.0001,
983
+ "step": 3950
984
+ },
985
+ {
986
+ "epoch": 96.94,
987
+ "learning_rate": 2.1844444444444446e-06,
988
+ "loss": 0.0001,
989
+ "step": 3975
990
+ },
991
+ {
992
+ "epoch": 97.55,
993
+ "learning_rate": 2.128888888888889e-06,
994
+ "loss": 0.0001,
995
+ "step": 4000
996
+ },
997
+ {
998
+ "epoch": 97.55,
999
+ "eval_loss": 0.287109375,
1000
+ "eval_runtime": 1274.1311,
1001
+ "eval_samples_per_second": 1.04,
1002
+ "eval_steps_per_second": 0.13,
1003
+ "eval_wer": 8.482348391374007,
1004
+ "step": 4000
1005
+ },
1006
+ {
1007
+ "epoch": 98.17,
1008
+ "learning_rate": 2.0711111111111114e-06,
1009
+ "loss": 0.0001,
1010
+ "step": 4025
1011
+ },
1012
+ {
1013
+ "epoch": 98.77,
1014
+ "learning_rate": 2.0155555555555554e-06,
1015
+ "loss": 0.0001,
1016
+ "step": 4050
1017
+ },
1018
+ {
1019
+ "epoch": 99.39,
1020
+ "learning_rate": 1.9600000000000003e-06,
1021
+ "loss": 0.0001,
1022
+ "step": 4075
1023
+ },
1024
+ {
1025
+ "epoch": 99.99,
1026
+ "learning_rate": 1.9044444444444445e-06,
1027
+ "loss": 0.0001,
1028
+ "step": 4100
1029
+ },
1030
+ {
1031
+ "epoch": 100.6,
1032
+ "learning_rate": 1.8466666666666668e-06,
1033
+ "loss": 0.0001,
1034
+ "step": 4125
1035
+ },
1036
+ {
1037
+ "epoch": 101.22,
1038
+ "learning_rate": 1.7955555555555556e-06,
1039
+ "loss": 0.0001,
1040
+ "step": 4150
1041
+ },
1042
+ {
1043
+ "epoch": 101.82,
1044
+ "learning_rate": 1.74e-06,
1045
+ "loss": 0.0001,
1046
+ "step": 4175
1047
+ },
1048
+ {
1049
+ "epoch": 102.43,
1050
+ "learning_rate": 1.6822222222222224e-06,
1051
+ "loss": 0.0001,
1052
+ "step": 4200
1053
+ },
1054
+ {
1055
+ "epoch": 103.05,
1056
+ "learning_rate": 1.6266666666666666e-06,
1057
+ "loss": 0.0001,
1058
+ "step": 4225
1059
+ },
1060
+ {
1061
+ "epoch": 103.65,
1062
+ "learning_rate": 1.5711111111111113e-06,
1063
+ "loss": 0.0001,
1064
+ "step": 4250
1065
+ },
1066
+ {
1067
+ "epoch": 104.27,
1068
+ "learning_rate": 1.5133333333333334e-06,
1069
+ "loss": 0.0001,
1070
+ "step": 4275
1071
+ },
1072
+ {
1073
+ "epoch": 104.87,
1074
+ "learning_rate": 1.457777777777778e-06,
1075
+ "loss": 0.0001,
1076
+ "step": 4300
1077
+ },
1078
+ {
1079
+ "epoch": 105.48,
1080
+ "learning_rate": 1.4022222222222223e-06,
1081
+ "loss": 0.0001,
1082
+ "step": 4325
1083
+ },
1084
+ {
1085
+ "epoch": 106.1,
1086
+ "learning_rate": 1.3444444444444446e-06,
1087
+ "loss": 0.0001,
1088
+ "step": 4350
1089
+ },
1090
+ {
1091
+ "epoch": 106.7,
1092
+ "learning_rate": 1.288888888888889e-06,
1093
+ "loss": 0.0001,
1094
+ "step": 4375
1095
+ },
1096
+ {
1097
+ "epoch": 107.31,
1098
+ "learning_rate": 1.2333333333333335e-06,
1099
+ "loss": 0.0001,
1100
+ "step": 4400
1101
+ },
1102
+ {
1103
+ "epoch": 107.92,
1104
+ "learning_rate": 1.1777777777777778e-06,
1105
+ "loss": 0.0001,
1106
+ "step": 4425
1107
+ },
1108
+ {
1109
+ "epoch": 108.53,
1110
+ "learning_rate": 1.12e-06,
1111
+ "loss": 0.0001,
1112
+ "step": 4450
1113
+ },
1114
+ {
1115
+ "epoch": 109.14,
1116
+ "learning_rate": 1.0644444444444445e-06,
1117
+ "loss": 0.0001,
1118
+ "step": 4475
1119
+ },
1120
+ {
1121
+ "epoch": 109.75,
1122
+ "learning_rate": 1.008888888888889e-06,
1123
+ "loss": 0.0001,
1124
+ "step": 4500
1125
+ },
1126
+ {
1127
+ "epoch": 110.36,
1128
+ "learning_rate": 9.511111111111111e-07,
1129
+ "loss": 0.0001,
1130
+ "step": 4525
1131
+ },
1132
+ {
1133
+ "epoch": 110.96,
1134
+ "learning_rate": 8.955555555555557e-07,
1135
+ "loss": 0.0001,
1136
+ "step": 4550
1137
+ },
1138
+ {
1139
+ "epoch": 111.58,
1140
+ "learning_rate": 8.400000000000001e-07,
1141
+ "loss": 0.0001,
1142
+ "step": 4575
1143
+ },
1144
+ {
1145
+ "epoch": 112.19,
1146
+ "learning_rate": 7.822222222222223e-07,
1147
+ "loss": 0.0001,
1148
+ "step": 4600
1149
+ },
1150
+ {
1151
+ "epoch": 112.8,
1152
+ "learning_rate": 7.266666666666668e-07,
1153
+ "loss": 0.0001,
1154
+ "step": 4625
1155
+ },
1156
+ {
1157
+ "epoch": 113.41,
1158
+ "learning_rate": 6.711111111111111e-07,
1159
+ "loss": 0.0001,
1160
+ "step": 4650
1161
+ },
1162
+ {
1163
+ "epoch": 114.02,
1164
+ "learning_rate": 6.133333333333333e-07,
1165
+ "loss": 0.0001,
1166
+ "step": 4675
1167
+ },
1168
+ {
1169
+ "epoch": 114.63,
1170
+ "learning_rate": 5.577777777777779e-07,
1171
+ "loss": 0.0001,
1172
+ "step": 4700
1173
+ },
1174
+ {
1175
+ "epoch": 115.24,
1176
+ "learning_rate": 5.022222222222222e-07,
1177
+ "loss": 0.0001,
1178
+ "step": 4725
1179
+ },
1180
+ {
1181
+ "epoch": 115.84,
1182
+ "learning_rate": 4.466666666666667e-07,
1183
+ "loss": 0.0001,
1184
+ "step": 4750
1185
+ },
1186
+ {
1187
+ "epoch": 116.46,
1188
+ "learning_rate": 3.8888888888888895e-07,
1189
+ "loss": 0.0001,
1190
+ "step": 4775
1191
+ },
1192
+ {
1193
+ "epoch": 117.07,
1194
+ "learning_rate": 3.3333333333333335e-07,
1195
+ "loss": 0.0001,
1196
+ "step": 4800
1197
+ },
1198
+ {
1199
+ "epoch": 117.67,
1200
+ "learning_rate": 2.7777777777777776e-07,
1201
+ "loss": 0.0001,
1202
+ "step": 4825
1203
+ },
1204
+ {
1205
+ "epoch": 118.29,
1206
+ "learning_rate": 2.2e-07,
1207
+ "loss": 0.0001,
1208
+ "step": 4850
1209
+ },
1210
+ {
1211
+ "epoch": 118.89,
1212
+ "learning_rate": 1.6444444444444447e-07,
1213
+ "loss": 0.0001,
1214
+ "step": 4875
1215
+ },
1216
+ {
1217
+ "epoch": 119.51,
1218
+ "learning_rate": 1.088888888888889e-07,
1219
+ "loss": 0.0001,
1220
+ "step": 4900
1221
+ },
1222
+ {
1223
+ "epoch": 120.12,
1224
+ "learning_rate": 5.111111111111112e-08,
1225
+ "loss": 0.0001,
1226
+ "step": 4925
1227
+ },
1228
+ {
1229
+ "epoch": 120.72,
1230
+ "learning_rate": 0.0,
1231
+ "loss": 0.0001,
1232
+ "step": 4950
1233
+ },
1234
+ {
1235
+ "epoch": 121.34,
1236
+ "learning_rate": 0.0,
1237
+ "loss": 0.0001,
1238
+ "step": 4975
1239
+ },
1240
+ {
1241
+ "epoch": 121.94,
1242
+ "learning_rate": 0.0,
1243
+ "loss": 0.0001,
1244
+ "step": 5000
1245
+ },
1246
+ {
1247
+ "epoch": 121.94,
1248
+ "eval_loss": 0.291259765625,
1249
+ "eval_runtime": 1274.9287,
1250
+ "eval_samples_per_second": 1.039,
1251
+ "eval_steps_per_second": 0.13,
1252
+ "eval_wer": 8.473140457818456,
1253
+ "step": 5000
1254
+ },
1255
+ {
1256
+ "epoch": 121.94,
1257
+ "step": 5000,
1258
+ "total_flos": 6.860942180681253e+20,
1259
+ "train_loss": 0.00465274755358696,
1260
+ "train_runtime": 62864.0618,
1261
+ "train_samples_per_second": 5.09,
1262
+ "train_steps_per_second": 0.08
1263
+ }
1264
+ ],
1265
+ "max_steps": 5000,
1266
+ "num_train_epochs": 122,
1267
+ "total_flos": 6.860942180681253e+20,
1268
+ "trial_name": null,
1269
+ "trial_params": null
1270
+ }