mili7522 commited on
Commit
a874860
1 Parent(s): 81ba2f9

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1673.64 +/- 163.88
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1ddb9f8c94ec46f53b0a0a5d906030e58625643fb247479452b25b57d9d44b8
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f39df7171f0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f39df717280>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f39df717310>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f39df7173a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f39df717430>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f39df7174c0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f39df717550>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f39df7175e0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f39df717670>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f39df717700>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f39df717790>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f39df717820>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f39df70ced0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1676709630798163151,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMyeML+DVDG+mrICPy3bjz/zpuu7cPGgvqALYb+IFxM/OERWP2oA6r7+uku/bShBvhmrLb++8/s+DgcUP0e4Vz9DboW/oDsHvjskAL/BHjQ/Hbwavwh1xb8SaJI+UrY6PrSCcT9R6OI+u5oiP4Bvjr8MvQq/nV20Ps7M9j4uUuW+oowSPnFD7769TJo+DhGlP4J3YD+1VWe94I1QvlBsp78k5V+/Z8UKvyAE2z2FYcM+9P9kP7JHFD/QLYY9ukYCuixKTb+jYEI+x6M0v2kjgj60gnE/SWkQwLuaIj8PDmY/oSy+P4AABz+Kc9k+Zm5Kv549bb6UPO2/cITMv4CFhj+3q2A/8Yekvd5kDsCAwLk/27XlPwpMf795Yc2/tEiwPj31Vz/jtsO/zM72PQJeg8Cgl1K/DdFQPxysQkCENgw+662Hv1Ho4j4Ohcm/Dw5mP+CFHj4NBHE+R70BPyk9RT95foA/l4lVP3cPGD+4qLy8N+VkP9KiTT/+/MM+EztXv+Auar45Pag/oqgsv6jOwT4b2lE+QXqbP+3Dsj5CHTW/pE4Vv+/hjz6aXI+9NElePuuth79R6OI+u5oiPw8OZj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADtRz62AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAp47LPQAAAAAdcPO/AAAAAAwScT0AAAAAmCDtPwAAAAB/TNO9AAAAALP5/D8AAAAADU+CvAAAAAA1gOy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqnaCtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgD5X0T0AAAAAX+vavwAAAAD9s3e9AAAAAInP/T8AAAAAbhnMvQAAAADLm/A/AAAAADuwrr0AAAAATnvvvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFhqfTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID/sYG9AAAAAAtL/78AAAAAPW+CvAAAAAAKDf8/AAAAAI/zpz0AAAAAK9zlPwAAAAD5YiO9AAAAAA6x5b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/iBA1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAba+IvQAAAADcF/m/AAAAAAWqlj0AAAAAf2zrPwAAAAC4OQ6+AAAAAIRP4j8AAAAAydDZvAAAAAAuBeS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKAMnuWrwOSMAWyUTegDjAF0lEdAqzZn2AXl83V9lChoBkdAn7hl6Vt4zWgHTegDaAhHQKs5SPFvQ4V1fZQoaAZHQJ4t7/JeVs1oB03oA2gIR0CrOeXiJfpmdX2UKGgGR0CeTnbbDdgwaAdN6ANoCEdAqzrf/rB0p3V9lChoBkdAnRmlcQiA2GgHTegDaAhHQKtCWf2bobJ1fZQoaAZHQJoJY/HHWBloB03oA2gIR0CrRR1D0DlpdX2UKGgGR0Ca9DdDpkf+aAdN6ANoCEdAq0W8sYl6aHV9lChoBkdAnfqVc2R7q2gHTegDaAhHQKtG5DRc/t91fZQoaAZHQJ5cao2n889oB03oA2gIR0CrUcImois5dX2UKGgGR0CgadBN21UmaAdN6ANoCEdAq1R7tCzC13V9lChoBkdAniRP6XSjQGgHTegDaAhHQKtVGzO5avB1fZQoaAZHQJ8Ghtix3V1oB03oA2gIR0CrVhYB/7SBdX2UKGgGR0Cd6TfjjrAyaAdN6ANoCEdAq12yLZSNwXV9lChoBkdAnMZK/h2nsWgHTegDaAhHQKtghy+6Ae91fZQoaAZHQJ479/7SApdoB03oA2gIR0CrYSR/EwWWdX2UKGgGR0Cambaq0dBCaAdN6ANoCEdAq2Ih+c6Nl3V9lChoBkdAnFgUIomXxGgHTegDaAhHQKtsW0SAYpF1fZQoaAZHQJjF+gBcRlJoB03oA2gIR0Crb/kq2BrfdX2UKGgGR0CVXgvvSc9XaAdN6ANoCEdAq3CU9+w1SHV9lChoBkdAmyzjT4L1EmgHTegDaAhHQKtxkxbB42V1fZQoaAZHQJy9dmUW2w5oB03oA2gIR0CreQYSQHRkdX2UKGgGR0CMIl5M10koaAdN6ANoCEdAq3vUzwc5sHV9lChoBkdAn6b7a24NJGgHTegDaAhHQKt8eoQ4CIV1fZQoaAZHQJ5yXGp++dtoB03oA2gIR0CrfXLDZUT+dX2UKGgGR0Cd6neWv8qGaAdN6ANoCEdAq4XT26ClJ3V9lChoBkdAnK3rA1vVE2gHTegDaAhHQKuJ+dGy5Zt1fZQoaAZHQJ0PHaFmFrVoB03oA2gIR0Criu1XeWOZdX2UKGgGR0CfBiOWBz3iaAdN6ANoCEdAq4xyG34KyHV9lChoBkdAnNQ6a1Cw8mgHTegDaAhHQKuUI77sOXp1fZQoaAZHQJ2zlJyyUs5oB03oA2gIR0Crlt9kSVW0dX2UKGgGR0Cc4q9FWn0kaAdN6ANoCEdAq5eJaNdZ73V9lChoBkdAnfx28ujASGgHTegDaAhHQKuYgtozvZ11fZQoaAZHQJ7O2ZBsyi5oB03oA2gIR0CroCB2wFC+dX2UKGgGR0Cad+CzC1qnaAdN6ANoCEdAq6PFuBMBZXV9lChoBkdAnJMayOaOP2gHTegDaAhHQKukqUnogV51fZQoaAZHQJ9rbf642CNoB03oA2gIR0Crpi0H6dlNdX2UKGgGR0CccVSA6MisaAdN6ANoCEdAq6+CH6/IsHV9lChoBkdAmpowCjk+5mgHTegDaAhHQKuyPQE6kqN1fZQoaAZHQJ13enwXqJNoB03oA2gIR0Crstu6/ZdwdX2UKGgGR0CfCOlolD4QaAdN6ANoCEdAq7PXIKc/dXV9lChoBkdAndnw2MsH0WgHTegDaAhHQKu7f7v5P/J1fZQoaAZHQJtrM3IdU85oB03oA2gIR0Crvk49ovi+dX2UKGgGR0CYH0DlHSWraAdN6ANoCEdAq77rl5nlGXV9lChoBkdAnDM8vVVghWgHTegDaAhHQKvASrFwT/R1fZQoaAZHQJ1Ig3GXHBFoB03oA2gIR0CrytxZ2ZAqdX2UKGgGR0CbTIA6uGKyaAdN6ANoCEdAq82YwK0D2nV9lChoBkdAncEH7tRekmgHTegDaAhHQKvOOqT8pCt1fZQoaAZHQJ6Cn3225QRoB03oA2gIR0CrzzNqpLmIdX2UKGgGR0CXJHS4e9zwaAdN6ANoCEdAq9b2Ay2x6nV9lChoBkdAnmJeJUHY6GgHTegDaAhHQKvZrrdFfAt1fZQoaAZHQJvwyVJL/S9oB03oA2gIR0Cr2lMenyd4dX2UKGgGR0Ca7M4p+c6OaAdN6ANoCEdAq9tMzbeuWHV9lChoBkdAnW2v4ZdfLWgHTegDaAhHQKvluQfZElV1fZQoaAZHQJc+JhMJyABoB03oA2gIR0Cr6SaQ/5ckdX2UKGgGR0Cceo4X40uUaAdN6ANoCEdAq+nHC0ngHnV9lChoBkdAnwfqp97Wu2gHTegDaAhHQKvqwQg9vCN1fZQoaAZHQJnMC1JDmbNoB03oA2gIR0Cr8kUi6g/UdX2UKGgGR0Ced3HYYixFaAdN6ANoCEdAq/UMdFOO83V9lChoBkdAnWjSB5HEuWgHTegDaAhHQKv1qsNDtw91fZQoaAZHQJ0+4L7XQMRoB03oA2gIR0Cr9qoBq9GrdX2UKGgGR0CbaXKeTV2BaAdN6ANoCEdAq/+DD4xk/nV9lChoBkdAnQoG3F1jiGgHTegDaAhHQKwD0gM+eOJ1fZQoaAZHQJ07Es4DLbJoB03oA2gIR0CsBMpnYg7pdX2UKGgGR0CcLSMIu5BkaAdN6ANoCEdArAYvU6PsA3V9lChoBkdAmSFvCIk7fmgHTegDaAhHQKwN3+AmReV1fZQoaAZHQJke0zFdcB5oB03oA2gIR0CsEMy0KJEZdX2UKGgGR0CdT58ZDRdAaAdN6ANoCEdArBFydvsJIHV9lChoBkdAnPto593KS2gHTegDaAhHQKwSeQsf7rN1fZQoaAZHQJ1RpnWattBoB03oA2gIR0CsGnNUwSJ1dX2UKGgGR0Cb5ODCgsbvaAdN6ANoCEdArB6cYdhiLHV9lChoBkdAlxd4jbBXS2gHTegDaAhHQKwfmn4O+Zh1fZQoaAZHQJmFtFI/Z/VoB03oA2gIR0CsITYHX2/SdX2UKGgGR0CLMgqDK5kLaAdN6ANoCEdArCoethd+onV9lChoBkdAmDdSMkyDZmgHTegDaAhHQKws79pAUtZ1fZQoaAZHQJNag7nxJ/ZoB03oA2gIR0CsLZY9gWrPdX2UKGgGR0Cb4d48EFGHaAdN6ANoCEdArC6eyon8bnV9lChoBkdAnEQjKs+3Y2gHTegDaAhHQKw2csT37DV1fZQoaAZHQJo0sBltj1BoB03oA2gIR0CsObNLL6k7dX2UKGgGR0CdbGZ3cHnmaAdN6ANoCEdArDqe9US7G3V9lChoBkdAnS8H7UG3WmgHTegDaAhHQKw8E3jMmnh1fZQoaAZHQJvwlDXvphZoB03oA2gIR0CsRgu6/ZdwdX2UKGgGR0CcNL2zv7WNaAdN6ANoCEdArEjzfpD/l3V9lChoBkdAnXTN6Tnq3WgHTegDaAhHQKxJocCHRCx1fZQoaAZHQJz5cWO6unxoB03oA2gIR0CsSqLlNlAedX2UKGgGR0CXjTNZeRgaaAdN6ANoCEdArFJLMmnfmHV9lChoBkdAkXRB2KVIJGgHTegDaAhHQKxVJZQpF1B1fZQoaAZHQJZEAd/8VHpoB03oA2gIR0CsVcW7OE/TdX2UKGgGR0CcK3OoYNy6aAdN6ANoCEdArFbgKF7D23V9lChoBkdAmJYXY+Sr52gHTegDaAhHQKxiB0KZ2IR1fZQoaAZHQJtZ4S/TLGJoB03oA2gIR0CsZLmSQo1DdX2UKGgGR0CdYiNxEORUaAdN6ANoCEdArGVXzSThYXV9lChoBkdAnFmQWzniemgHTegDaAhHQKxmVeFcpsp1fZQoaAZHQJ0lykUKzAxoB03oA2gIR0CsbhLbYbsGdX2UKGgGR0CURZreZXuFaAdN6ANoCEdArHDWXXyy2XV9lChoBkdAmoffOt4iYGgHTegDaAhHQKxxeHh0heR1fZQoaAZHQJjFv6j3225oB03oA2gIR0CscoF4keIVdX2UKGgGR0CUrTYZl4C7aAdN6ANoCEdArHzBAfMfR3V9lChoBkdAmhoorjHXE2gHTegDaAhHQKyAYc9W6sh1fZQoaAZHQJROPcO9WZJoB03oA2gIR0CsgPyJCSiedX2UKGgGR0Cb56Gyon8baAdN6ANoCEdArIH76ab4J3VlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33bc91d8f4f3c749b8e56ed86da30002f59e7e5c57f12cc2e9c290b51dd765c7
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7678c47064d77aa00f253acd0cc04aa1938987fefd00dedf921a96d77dd9a31a
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f39df7171f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f39df717280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f39df717310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f39df7173a0>", "_build": "<function ActorCriticPolicy._build at 0x7f39df717430>", "forward": "<function ActorCriticPolicy.forward at 0x7f39df7174c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f39df717550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f39df7175e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f39df717670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f39df717700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f39df717790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f39df717820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f39df70ced0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676709630798163151, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMyeML+DVDG+mrICPy3bjz/zpuu7cPGgvqALYb+IFxM/OERWP2oA6r7+uku/bShBvhmrLb++8/s+DgcUP0e4Vz9DboW/oDsHvjskAL/BHjQ/Hbwavwh1xb8SaJI+UrY6PrSCcT9R6OI+u5oiP4Bvjr8MvQq/nV20Ps7M9j4uUuW+oowSPnFD7769TJo+DhGlP4J3YD+1VWe94I1QvlBsp78k5V+/Z8UKvyAE2z2FYcM+9P9kP7JHFD/QLYY9ukYCuixKTb+jYEI+x6M0v2kjgj60gnE/SWkQwLuaIj8PDmY/oSy+P4AABz+Kc9k+Zm5Kv549bb6UPO2/cITMv4CFhj+3q2A/8Yekvd5kDsCAwLk/27XlPwpMf795Yc2/tEiwPj31Vz/jtsO/zM72PQJeg8Cgl1K/DdFQPxysQkCENgw+662Hv1Ho4j4Ohcm/Dw5mP+CFHj4NBHE+R70BPyk9RT95foA/l4lVP3cPGD+4qLy8N+VkP9KiTT/+/MM+EztXv+Auar45Pag/oqgsv6jOwT4b2lE+QXqbP+3Dsj5CHTW/pE4Vv+/hjz6aXI+9NElePuuth79R6OI+u5oiPw8OZj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADtRz62AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAp47LPQAAAAAdcPO/AAAAAAwScT0AAAAAmCDtPwAAAAB/TNO9AAAAALP5/D8AAAAADU+CvAAAAAA1gOy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqnaCtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgD5X0T0AAAAAX+vavwAAAAD9s3e9AAAAAInP/T8AAAAAbhnMvQAAAADLm/A/AAAAADuwrr0AAAAATnvvvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFhqfTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID/sYG9AAAAAAtL/78AAAAAPW+CvAAAAAAKDf8/AAAAAI/zpz0AAAAAK9zlPwAAAAD5YiO9AAAAAA6x5b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/iBA1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAba+IvQAAAADcF/m/AAAAAAWqlj0AAAAAf2zrPwAAAAC4OQ6+AAAAAIRP4j8AAAAAydDZvAAAAAAuBeS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKAMnuWrwOSMAWyUTegDjAF0lEdAqzZn2AXl83V9lChoBkdAn7hl6Vt4zWgHTegDaAhHQKs5SPFvQ4V1fZQoaAZHQJ4t7/JeVs1oB03oA2gIR0CrOeXiJfpmdX2UKGgGR0CeTnbbDdgwaAdN6ANoCEdAqzrf/rB0p3V9lChoBkdAnRmlcQiA2GgHTegDaAhHQKtCWf2bobJ1fZQoaAZHQJoJY/HHWBloB03oA2gIR0CrRR1D0DlpdX2UKGgGR0Ca9DdDpkf+aAdN6ANoCEdAq0W8sYl6aHV9lChoBkdAnfqVc2R7q2gHTegDaAhHQKtG5DRc/t91fZQoaAZHQJ5cao2n889oB03oA2gIR0CrUcImois5dX2UKGgGR0CgadBN21UmaAdN6ANoCEdAq1R7tCzC13V9lChoBkdAniRP6XSjQGgHTegDaAhHQKtVGzO5avB1fZQoaAZHQJ8Ghtix3V1oB03oA2gIR0CrVhYB/7SBdX2UKGgGR0Cd6TfjjrAyaAdN6ANoCEdAq12yLZSNwXV9lChoBkdAnMZK/h2nsWgHTegDaAhHQKtghy+6Ae91fZQoaAZHQJ479/7SApdoB03oA2gIR0CrYSR/EwWWdX2UKGgGR0Cambaq0dBCaAdN6ANoCEdAq2Ih+c6Nl3V9lChoBkdAnFgUIomXxGgHTegDaAhHQKtsW0SAYpF1fZQoaAZHQJjF+gBcRlJoB03oA2gIR0Crb/kq2BrfdX2UKGgGR0CVXgvvSc9XaAdN6ANoCEdAq3CU9+w1SHV9lChoBkdAmyzjT4L1EmgHTegDaAhHQKtxkxbB42V1fZQoaAZHQJy9dmUW2w5oB03oA2gIR0CreQYSQHRkdX2UKGgGR0CMIl5M10koaAdN6ANoCEdAq3vUzwc5sHV9lChoBkdAn6b7a24NJGgHTegDaAhHQKt8eoQ4CIV1fZQoaAZHQJ5yXGp++dtoB03oA2gIR0CrfXLDZUT+dX2UKGgGR0Cd6neWv8qGaAdN6ANoCEdAq4XT26ClJ3V9lChoBkdAnK3rA1vVE2gHTegDaAhHQKuJ+dGy5Zt1fZQoaAZHQJ0PHaFmFrVoB03oA2gIR0Criu1XeWOZdX2UKGgGR0CfBiOWBz3iaAdN6ANoCEdAq4xyG34KyHV9lChoBkdAnNQ6a1Cw8mgHTegDaAhHQKuUI77sOXp1fZQoaAZHQJ2zlJyyUs5oB03oA2gIR0Crlt9kSVW0dX2UKGgGR0Cc4q9FWn0kaAdN6ANoCEdAq5eJaNdZ73V9lChoBkdAnfx28ujASGgHTegDaAhHQKuYgtozvZ11fZQoaAZHQJ7O2ZBsyi5oB03oA2gIR0CroCB2wFC+dX2UKGgGR0Cad+CzC1qnaAdN6ANoCEdAq6PFuBMBZXV9lChoBkdAnJMayOaOP2gHTegDaAhHQKukqUnogV51fZQoaAZHQJ9rbf642CNoB03oA2gIR0Crpi0H6dlNdX2UKGgGR0CccVSA6MisaAdN6ANoCEdAq6+CH6/IsHV9lChoBkdAmpowCjk+5mgHTegDaAhHQKuyPQE6kqN1fZQoaAZHQJ13enwXqJNoB03oA2gIR0Crstu6/ZdwdX2UKGgGR0CfCOlolD4QaAdN6ANoCEdAq7PXIKc/dXV9lChoBkdAndnw2MsH0WgHTegDaAhHQKu7f7v5P/J1fZQoaAZHQJtrM3IdU85oB03oA2gIR0Crvk49ovi+dX2UKGgGR0CYH0DlHSWraAdN6ANoCEdAq77rl5nlGXV9lChoBkdAnDM8vVVghWgHTegDaAhHQKvASrFwT/R1fZQoaAZHQJ1Ig3GXHBFoB03oA2gIR0CrytxZ2ZAqdX2UKGgGR0CbTIA6uGKyaAdN6ANoCEdAq82YwK0D2nV9lChoBkdAncEH7tRekmgHTegDaAhHQKvOOqT8pCt1fZQoaAZHQJ6Cn3225QRoB03oA2gIR0CrzzNqpLmIdX2UKGgGR0CXJHS4e9zwaAdN6ANoCEdAq9b2Ay2x6nV9lChoBkdAnmJeJUHY6GgHTegDaAhHQKvZrrdFfAt1fZQoaAZHQJvwyVJL/S9oB03oA2gIR0Cr2lMenyd4dX2UKGgGR0Ca7M4p+c6OaAdN6ANoCEdAq9tMzbeuWHV9lChoBkdAnW2v4ZdfLWgHTegDaAhHQKvluQfZElV1fZQoaAZHQJc+JhMJyABoB03oA2gIR0Cr6SaQ/5ckdX2UKGgGR0Cceo4X40uUaAdN6ANoCEdAq+nHC0ngHnV9lChoBkdAnwfqp97Wu2gHTegDaAhHQKvqwQg9vCN1fZQoaAZHQJnMC1JDmbNoB03oA2gIR0Cr8kUi6g/UdX2UKGgGR0Ced3HYYixFaAdN6ANoCEdAq/UMdFOO83V9lChoBkdAnWjSB5HEuWgHTegDaAhHQKv1qsNDtw91fZQoaAZHQJ0+4L7XQMRoB03oA2gIR0Cr9qoBq9GrdX2UKGgGR0CbaXKeTV2BaAdN6ANoCEdAq/+DD4xk/nV9lChoBkdAnQoG3F1jiGgHTegDaAhHQKwD0gM+eOJ1fZQoaAZHQJ07Es4DLbJoB03oA2gIR0CsBMpnYg7pdX2UKGgGR0CcLSMIu5BkaAdN6ANoCEdArAYvU6PsA3V9lChoBkdAmSFvCIk7fmgHTegDaAhHQKwN3+AmReV1fZQoaAZHQJke0zFdcB5oB03oA2gIR0CsEMy0KJEZdX2UKGgGR0CdT58ZDRdAaAdN6ANoCEdArBFydvsJIHV9lChoBkdAnPto593KS2gHTegDaAhHQKwSeQsf7rN1fZQoaAZHQJ1RpnWattBoB03oA2gIR0CsGnNUwSJ1dX2UKGgGR0Cb5ODCgsbvaAdN6ANoCEdArB6cYdhiLHV9lChoBkdAlxd4jbBXS2gHTegDaAhHQKwfmn4O+Zh1fZQoaAZHQJmFtFI/Z/VoB03oA2gIR0CsITYHX2/SdX2UKGgGR0CLMgqDK5kLaAdN6ANoCEdArCoethd+onV9lChoBkdAmDdSMkyDZmgHTegDaAhHQKws79pAUtZ1fZQoaAZHQJNag7nxJ/ZoB03oA2gIR0CsLZY9gWrPdX2UKGgGR0Cb4d48EFGHaAdN6ANoCEdArC6eyon8bnV9lChoBkdAnEQjKs+3Y2gHTegDaAhHQKw2csT37DV1fZQoaAZHQJo0sBltj1BoB03oA2gIR0CsObNLL6k7dX2UKGgGR0CdbGZ3cHnmaAdN6ANoCEdArDqe9US7G3V9lChoBkdAnS8H7UG3WmgHTegDaAhHQKw8E3jMmnh1fZQoaAZHQJvwlDXvphZoB03oA2gIR0CsRgu6/ZdwdX2UKGgGR0CcNL2zv7WNaAdN6ANoCEdArEjzfpD/l3V9lChoBkdAnXTN6Tnq3WgHTegDaAhHQKxJocCHRCx1fZQoaAZHQJz5cWO6unxoB03oA2gIR0CsSqLlNlAedX2UKGgGR0CXjTNZeRgaaAdN6ANoCEdArFJLMmnfmHV9lChoBkdAkXRB2KVIJGgHTegDaAhHQKxVJZQpF1B1fZQoaAZHQJZEAd/8VHpoB03oA2gIR0CsVcW7OE/TdX2UKGgGR0CcK3OoYNy6aAdN6ANoCEdArFbgKF7D23V9lChoBkdAmJYXY+Sr52gHTegDaAhHQKxiB0KZ2IR1fZQoaAZHQJtZ4S/TLGJoB03oA2gIR0CsZLmSQo1DdX2UKGgGR0CdYiNxEORUaAdN6ANoCEdArGVXzSThYXV9lChoBkdAnFmQWzniemgHTegDaAhHQKxmVeFcpsp1fZQoaAZHQJ0lykUKzAxoB03oA2gIR0CsbhLbYbsGdX2UKGgGR0CURZreZXuFaAdN6ANoCEdArHDWXXyy2XV9lChoBkdAmoffOt4iYGgHTegDaAhHQKxxeHh0heR1fZQoaAZHQJjFv6j3225oB03oA2gIR0CscoF4keIVdX2UKGgGR0CUrTYZl4C7aAdN6ANoCEdArHzBAfMfR3V9lChoBkdAmhoorjHXE2gHTegDaAhHQKyAYc9W6sh1fZQoaAZHQJROPcO9WZJoB03oA2gIR0CsgPyJCSiedX2UKGgGR0Cb56Gyon8baAdN6ANoCEdArIH76ab4J3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (922 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1673.643726898918, "std_reward": 163.87516766103707, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-18T09:37:59.139293"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a52e065bb3218e02c6453b2aff5f26052d637f3633bf6ae75d6c5730ed633c9b
3
+ size 2136