mili7522 commited on
Commit
2c4c934
1 Parent(s): 03973cc

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.84 +/- 0.64
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65daa93ca255c55c99e14f221cdcc8a4d6afa9457f8c597104fd086c99ee960e
3
+ size 108011
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8031fcf700>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f8031fca8a0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1676729859950818382,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAWlzMPuY+Gz041hk/WlzMPuY+Gz041hk/WlzMPuY+Gz041hk/WlzMPuY+Gz041hk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAskO9v2Rmz716Idu/AsW7P/rukr88dzY/uMWEPiAi2b9Xoc8/3QUzv1IGlr/eqlG/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABaXMw+5j4bPTjWGT9eZxm8h6NjOrX/S7xaXMw+5j4bPTjWGT9eZxm8h6NjOrX/S7xaXMw+5j4bPTjWGT9eZxm8h6NjOrX/S7xaXMw+5j4bPTjWGT9eZxm8h6NjOrX/S7yUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.3991421 0.03790178 0.60092497]\n [0.3991421 0.03790178 0.60092497]\n [0.3991421 0.03790178 0.60092497]\n [0.3991421 0.03790178 0.60092497]]",
60
+ "desired_goal": "[[-1.4786284 -0.10126951 -1.7119591 ]\n [ 1.4669497 -1.147918 0.7127569 ]\n [ 0.25932097 -1.6963539 1.6221112 ]\n [-0.6993082 -1.1720679 -0.8190135 ]]",
61
+ "observation": "[[ 0.3991421 0.03790178 0.60092497 -0.00936302 0.00086837 -0.0124511 ]\n [ 0.3991421 0.03790178 0.60092497 -0.00936302 0.00086837 -0.0124511 ]\n [ 0.3991421 0.03790178 0.60092497 -0.00936302 0.00086837 -0.0124511 ]\n [ 0.3991421 0.03790178 0.60092497 -0.00936302 0.00086837 -0.0124511 ]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAApe2vTlcBz1N1Wg96ozbvdPCy72fevY9I4nPPBOxqbpe1mc+bFd3vddSA76lkhk9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.08915521 0.03304693 0.05684404]\n [-0.10720237 -0.09949269 0.12035107]\n [ 0.02533395 -0.00129464 0.22640368]\n [-0.06038611 -0.1282457 0.03749337]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGHjuPVxSAcCUhpRSlIwBbJRLMowBdJRHQKYCUWUr08N1fZQoaAZoCWgPQwjLoUW28z0BwJSGlFKUaBVLMmgWR0CmAhYjSofkdX2UKGgGaAloD0MIhgSMLm9uAcCUhpRSlGgVSzJoFkdApgHY3xWkrXV9lChoBmgJaA9DCFacai3MwgLAlIaUUpRoFUsyaBZHQKYBnBu4wyt1fZQoaAZoCWgPQwiiYTHqWvv7v5SGlFKUaBVLMmgWR0CmAze+/QBxdX2UKGgGaAloD0MIbQA2IEKcAsCUhpRSlGgVSzJoFkdApgL82tMfzXV9lChoBmgJaA9DCNZSQNr/YADAlIaUUpRoFUsyaBZHQKYCv40Mw111fZQoaAZoCWgPQwiZ9WIoJxr3v5SGlFKUaBVLMmgWR0CmAoMEq2BrdX2UKGgGaAloD0MISPq0iv4Q9r+UhpRSlGgVSzJoFkdApgQoao/A03V9lChoBmgJaA9DCCyf5Xlwt/m/lIaUUpRoFUsyaBZHQKYD7UT+NtJ1fZQoaAZoCWgPQwiy1eWUgBgBwJSGlFKUaBVLMmgWR0CmA6/kmx+sdX2UKGgGaAloD0MI4rA08KP6BMCUhpRSlGgVSzJoFkdApgNzIgeRxXV9lChoBmgJaA9DCDcWFAZlmgPAlIaUUpRoFUsyaBZHQKYFIsPrfLt1fZQoaAZoCWgPQwgrFyr/Wp77v5SGlFKUaBVLMmgWR0CmBOe0Xxe+dX2UKGgGaAloD0MITfVk/tEXBcCUhpRSlGgVSzJoFkdApgSqXKKYRnV9lChoBmgJaA9DCJ93Y0FhkPO/lIaUUpRoFUsyaBZHQKYEbf1pTMt1fZQoaAZoCWgPQwieJcgIqLD+v5SGlFKUaBVLMmgWR0CmBitnwob5dX2UKGgGaAloD0MIyvs4miMr+7+UhpRSlGgVSzJoFkdApgXwDFId2nV9lChoBmgJaA9DCDOID+z47/K/lIaUUpRoFUsyaBZHQKYFsqhDgIh1fZQoaAZoCWgPQwikcD0K1+P1v5SGlFKUaBVLMmgWR0CmBXYUnG83dX2UKGgGaAloD0MIHNKowMm29r+UhpRSlGgVSzJoFkdApgcdoN/e+HV9lChoBmgJaA9DCFopBHKJwwLAlIaUUpRoFUsyaBZHQKYG4kadc0N1fZQoaAZoCWgPQwh1BHCzeDH9v5SGlFKUaBVLMmgWR0CmBqTXrdFfdX2UKGgGaAloD0MI8rImFvgK8r+UhpRSlGgVSzJoFkdApgZoUL2HtXV9lChoBmgJaA9DCLYODvYmBvW/lIaUUpRoFUsyaBZHQKYINENOM2p1fZQoaAZoCWgPQwh1PjxLkBH4v5SGlFKUaBVLMmgWR0CmB/jm0VrRdX2UKGgGaAloD0MICVOUS+PX9b+UhpRSlGgVSzJoFkdApge7n9vS+nV9lChoBmgJaA9DCLTlXIqryv+/lIaUUpRoFUsyaBZHQKYHf6Uqx1R1fZQoaAZoCWgPQwhjRnh7EAL2v5SGlFKUaBVLMmgWR0CmCSgJLM9sdX2UKGgGaAloD0MI+kFdpFAW97+UhpRSlGgVSzJoFkdApgjs4xUNrnV9lChoBmgJaA9DCPK0/MBV3vK/lIaUUpRoFUsyaBZHQKYIr4h2W6d1fZQoaAZoCWgPQwh5d2SsNr/2v5SGlFKUaBVLMmgWR0CmCHLzGxUvdX2UKGgGaAloD0MIIF1sWimE/b+UhpRSlGgVSzJoFkdApgoX/aQFLXV9lChoBmgJaA9DCFsjgnFwafm/lIaUUpRoFUsyaBZHQKYJ3LRrrPd1fZQoaAZoCWgPQwhV+glnt1b2v5SGlFKUaBVLMmgWR0CmCZ+bd8ArdX2UKGgGaAloD0MI1ULJ5NRO8b+UhpRSlGgVSzJoFkdApgli/RE4N3V9lChoBmgJaA9DCNtN8E3TJwHAlIaUUpRoFUsyaBZHQKYLBZFG5MF1fZQoaAZoCWgPQwimtP6WADwEwJSGlFKUaBVLMmgWR0CmCsp1A7gbdX2UKGgGaAloD0MIDybFxyck9r+UhpRSlGgVSzJoFkdApgqNXgccVHV9lChoBmgJaA9DCPNYMzLIHfm/lIaUUpRoFUsyaBZHQKYKUKziS7p1fZQoaAZoCWgPQwie76fGS3cDwJSGlFKUaBVLMmgWR0CmDAEtNBWxdX2UKGgGaAloD0MIza/mAMEc/7+UhpRSlGgVSzJoFkdApgvGIRAbAHV9lChoBmgJaA9DCJi+1xAcV/u/lIaUUpRoFUsyaBZHQKYLiLxZuAJ1fZQoaAZoCWgPQwjrAIi7ehXmv5SGlFKUaBVLMmgWR0CmC0wtapxWdX2UKGgGaAloD0MIM2q+Sj52/L+UhpRSlGgVSzJoFkdApgzlrGipN3V9lChoBmgJaA9DCMMstHOahQHAlIaUUpRoFUsyaBZHQKYMqoFV1fV1fZQoaAZoCWgPQwijVwOUhtr/v5SGlFKUaBVLMmgWR0CmDG0Qsf7rdX2UKGgGaAloD0MISREZVvHG/L+UhpRSlGgVSzJoFkdApgwwV2zOX3V9lChoBmgJaA9DCPhsHRzszeq/lIaUUpRoFUsyaBZHQKYN3XRw6yV1fZQoaAZoCWgPQwj7rgj+t9Lxv5SGlFKUaBVLMmgWR0CmDaIp6QeWdX2UKGgGaAloD0MIEYqtoGnJ/L+UhpRSlGgVSzJoFkdApg1krmQr+nV9lChoBmgJaA9DCKOs30xMl/a/lIaUUpRoFUsyaBZHQKYNJ/bTMJR1fZQoaAZoCWgPQwi7ufjbnmD1v5SGlFKUaBVLMmgWR0CmDsJf6XSjdX2UKGgGaAloD0MIStOgaB4A9L+UhpRSlGgVSzJoFkdApg6HLNfPX3V9lChoBmgJaA9DCE2+2ebGtADAlIaUUpRoFUsyaBZHQKYOSeZG8VZ1fZQoaAZoCWgPQwgZjuczoH4BwJSGlFKUaBVLMmgWR0CmDg0h3aBadX2UKGgGaAloD0MIUd1c/G3P6r+UhpRSlGgVSzJoFkdApg/AkxASnXV9lChoBmgJaA9DCEqZ1NAG4O6/lIaUUpRoFUsyaBZHQKYPhXq7iAF1fZQoaAZoCWgPQwhE+YIWEjDzv5SGlFKUaBVLMmgWR0CmD0hnSOR1dX2UKGgGaAloD0MIBcB4Bg39BMCUhpRSlGgVSzJoFkdApg8LvsqrinV9lChoBmgJaA9DCP+VlSaloPu/lIaUUpRoFUsyaBZHQKYQzlRxcVx1fZQoaAZoCWgPQwgNb9bgfRUBwJSGlFKUaBVLMmgWR0CmEJOJLuhLdX2UKGgGaAloD0MIzo3pCUv88r+UhpRSlGgVSzJoFkdAphBW1QZXMnV9lChoBmgJaA9DCAYujzUjQ/6/lIaUUpRoFUsyaBZHQKYQGuOCGvh1fZQoaAZoCWgPQwjpCyHn/b/8v5SGlFKUaBVLMmgWR0CmEkTByjpLdX2UKGgGaAloD0MIstgmFY3VAcCUhpRSlGgVSzJoFkdAphIJ8D0UXnV9lChoBmgJaA9DCJaTUPpCiPK/lIaUUpRoFUsyaBZHQKYRzTuOS4h1fZQoaAZoCWgPQwgKFLGIYUf7v5SGlFKUaBVLMmgWR0CmEZFL39JjdX2UKGgGaAloD0MInbryWZ7HAMCUhpRSlGgVSzJoFkdAphOt16mfoXV9lChoBmgJaA9DCPWEJR5QNv6/lIaUUpRoFUsyaBZHQKYTcxqwhW51fZQoaAZoCWgPQwjoM6DejJr/v5SGlFKUaBVLMmgWR0CmEzaQ3gk1dX2UKGgGaAloD0MIKENVTKUfAcCUhpRSlGgVSzJoFkdAphL62OQyRHV9lChoBmgJaA9DCBhBYyZRL/i/lIaUUpRoFUsyaBZHQKYVGsxO+Ix1fZQoaAZoCWgPQwjLngQ256D+v5SGlFKUaBVLMmgWR0CmFOBs67uldX2UKGgGaAloD0MIYsCSq1hcAMCUhpRSlGgVSzJoFkdAphSjlA/s3XV9lChoBmgJaA9DCFJ/vcKCO/y/lIaUUpRoFUsyaBZHQKYUZ03fhuR1fZQoaAZoCWgPQwhC0NGqljT7v5SGlFKUaBVLMmgWR0CmFr7m2b5NdX2UKGgGaAloD0MI+s+aH3+p+r+UhpRSlGgVSzJoFkdAphaEcfeUIXV9lChoBmgJaA9DCDG2EOSgxPq/lIaUUpRoFUsyaBZHQKYWR+DvmYB1fZQoaAZoCWgPQwgM5q+QubLlv5SGlFKUaBVLMmgWR0CmFgxKpT/AdX2UKGgGaAloD0MITdwqiIFOAsCUhpRSlGgVSzJoFkdAphhTSVnmJXV9lChoBmgJaA9DCOiE0EGXUADAlIaUUpRoFUsyaBZHQKYYGMhHLA51fZQoaAZoCWgPQwhf7/54r/oGwJSGlFKUaBVLMmgWR0CmF9yLZSNwdX2UKGgGaAloD0MIonxBCwnY+b+UhpRSlGgVSzJoFkdApheg5xR2sHV9lChoBmgJaA9DCI+rkV1p2fa/lIaUUpRoFUsyaBZHQKYZ7mPHT7V1fZQoaAZoCWgPQwgeGED4UGL7v5SGlFKUaBVLMmgWR0CmGbQOe8PGdX2UKGgGaAloD0MIzc6idyrg+b+UhpRSlGgVSzJoFkdAphl4JkXk53V9lChoBmgJaA9DCOv/HObLS/i/lIaUUpRoFUsyaBZHQKYZPHJcPe51fZQoaAZoCWgPQwjsFRbcD3gCwJSGlFKUaBVLMmgWR0CmG0BsqJ/HdX2UKGgGaAloD0MIwlHy6hyD8L+UhpRSlGgVSzJoFkdAphsFGRV6vHV9lChoBmgJaA9DCFVq9kArsPK/lIaUUpRoFUsyaBZHQKYayAQxveh1fZQoaAZoCWgPQwjTvySVKWYFwJSGlFKUaBVLMmgWR0CmGouW8h9tdX2UKGgGaAloD0MIyeNp+YFrBMCUhpRSlGgVSzJoFkdAphwws5GSZHV9lChoBmgJaA9DCLpNuFfm7fa/lIaUUpRoFUsyaBZHQKYb9bxmTTx1fZQoaAZoCWgPQwgcz2dAvdn+v5SGlFKUaBVLMmgWR0CmG7kCmuTzdX2UKGgGaAloD0MI0ETY8PQqA8CUhpRSlGgVSzJoFkdApht8ZR8+inV9lChoBmgJaA9DCKmhDcAGhP2/lIaUUpRoFUsyaBZHQKYdJ0I1LrZ1fZQoaAZoCWgPQwgK9fQR+AP1v5SGlFKUaBVLMmgWR0CmHOv4EfT1dX2UKGgGaAloD0MI3V897lst/7+UhpRSlGgVSzJoFkdAphyukxh2GXV9lChoBmgJaA9DCGafxyjP/PG/lIaUUpRoFUsyaBZHQKYccc3EQ5F1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5b7b2b8395ced09ab220a718e67c976ebcb1c4952827e56865a73b69d5f3d03
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:039fa550467771538c57fbf8f50f6e21f57ca32f58603374fb696076141b3ed4
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8031fcf700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8031fca8a0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676729859950818382, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAWlzMPuY+Gz041hk/WlzMPuY+Gz041hk/WlzMPuY+Gz041hk/WlzMPuY+Gz041hk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAskO9v2Rmz716Idu/AsW7P/rukr88dzY/uMWEPiAi2b9Xoc8/3QUzv1IGlr/eqlG/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABaXMw+5j4bPTjWGT9eZxm8h6NjOrX/S7xaXMw+5j4bPTjWGT9eZxm8h6NjOrX/S7xaXMw+5j4bPTjWGT9eZxm8h6NjOrX/S7xaXMw+5j4bPTjWGT9eZxm8h6NjOrX/S7yUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3991421 0.03790178 0.60092497]\n [0.3991421 0.03790178 0.60092497]\n [0.3991421 0.03790178 0.60092497]\n [0.3991421 0.03790178 0.60092497]]", "desired_goal": "[[-1.4786284 -0.10126951 -1.7119591 ]\n [ 1.4669497 -1.147918 0.7127569 ]\n [ 0.25932097 -1.6963539 1.6221112 ]\n [-0.6993082 -1.1720679 -0.8190135 ]]", "observation": "[[ 0.3991421 0.03790178 0.60092497 -0.00936302 0.00086837 -0.0124511 ]\n [ 0.3991421 0.03790178 0.60092497 -0.00936302 0.00086837 -0.0124511 ]\n [ 0.3991421 0.03790178 0.60092497 -0.00936302 0.00086837 -0.0124511 ]\n [ 0.3991421 0.03790178 0.60092497 -0.00936302 0.00086837 -0.0124511 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAApe2vTlcBz1N1Wg96ozbvdPCy72fevY9I4nPPBOxqbpe1mc+bFd3vddSA76lkhk9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.08915521 0.03304693 0.05684404]\n [-0.10720237 -0.09949269 0.12035107]\n [ 0.02533395 -0.00129464 0.22640368]\n [-0.06038611 -0.1282457 0.03749337]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGHjuPVxSAcCUhpRSlIwBbJRLMowBdJRHQKYCUWUr08N1fZQoaAZoCWgPQwjLoUW28z0BwJSGlFKUaBVLMmgWR0CmAhYjSofkdX2UKGgGaAloD0MIhgSMLm9uAcCUhpRSlGgVSzJoFkdApgHY3xWkrXV9lChoBmgJaA9DCFacai3MwgLAlIaUUpRoFUsyaBZHQKYBnBu4wyt1fZQoaAZoCWgPQwiiYTHqWvv7v5SGlFKUaBVLMmgWR0CmAze+/QBxdX2UKGgGaAloD0MIbQA2IEKcAsCUhpRSlGgVSzJoFkdApgL82tMfzXV9lChoBmgJaA9DCNZSQNr/YADAlIaUUpRoFUsyaBZHQKYCv40Mw111fZQoaAZoCWgPQwiZ9WIoJxr3v5SGlFKUaBVLMmgWR0CmAoMEq2BrdX2UKGgGaAloD0MISPq0iv4Q9r+UhpRSlGgVSzJoFkdApgQoao/A03V9lChoBmgJaA9DCCyf5Xlwt/m/lIaUUpRoFUsyaBZHQKYD7UT+NtJ1fZQoaAZoCWgPQwiy1eWUgBgBwJSGlFKUaBVLMmgWR0CmA6/kmx+sdX2UKGgGaAloD0MI4rA08KP6BMCUhpRSlGgVSzJoFkdApgNzIgeRxXV9lChoBmgJaA9DCDcWFAZlmgPAlIaUUpRoFUsyaBZHQKYFIsPrfLt1fZQoaAZoCWgPQwgrFyr/Wp77v5SGlFKUaBVLMmgWR0CmBOe0Xxe+dX2UKGgGaAloD0MITfVk/tEXBcCUhpRSlGgVSzJoFkdApgSqXKKYRnV9lChoBmgJaA9DCJ93Y0FhkPO/lIaUUpRoFUsyaBZHQKYEbf1pTMt1fZQoaAZoCWgPQwieJcgIqLD+v5SGlFKUaBVLMmgWR0CmBitnwob5dX2UKGgGaAloD0MIyvs4miMr+7+UhpRSlGgVSzJoFkdApgXwDFId2nV9lChoBmgJaA9DCDOID+z47/K/lIaUUpRoFUsyaBZHQKYFsqhDgIh1fZQoaAZoCWgPQwikcD0K1+P1v5SGlFKUaBVLMmgWR0CmBXYUnG83dX2UKGgGaAloD0MIHNKowMm29r+UhpRSlGgVSzJoFkdApgcdoN/e+HV9lChoBmgJaA9DCFopBHKJwwLAlIaUUpRoFUsyaBZHQKYG4kadc0N1fZQoaAZoCWgPQwh1BHCzeDH9v5SGlFKUaBVLMmgWR0CmBqTXrdFfdX2UKGgGaAloD0MI8rImFvgK8r+UhpRSlGgVSzJoFkdApgZoUL2HtXV9lChoBmgJaA9DCLYODvYmBvW/lIaUUpRoFUsyaBZHQKYINENOM2p1fZQoaAZoCWgPQwh1PjxLkBH4v5SGlFKUaBVLMmgWR0CmB/jm0VrRdX2UKGgGaAloD0MICVOUS+PX9b+UhpRSlGgVSzJoFkdApge7n9vS+nV9lChoBmgJaA9DCLTlXIqryv+/lIaUUpRoFUsyaBZHQKYHf6Uqx1R1fZQoaAZoCWgPQwhjRnh7EAL2v5SGlFKUaBVLMmgWR0CmCSgJLM9sdX2UKGgGaAloD0MI+kFdpFAW97+UhpRSlGgVSzJoFkdApgjs4xUNrnV9lChoBmgJaA9DCPK0/MBV3vK/lIaUUpRoFUsyaBZHQKYIr4h2W6d1fZQoaAZoCWgPQwh5d2SsNr/2v5SGlFKUaBVLMmgWR0CmCHLzGxUvdX2UKGgGaAloD0MIIF1sWimE/b+UhpRSlGgVSzJoFkdApgoX/aQFLXV9lChoBmgJaA9DCFsjgnFwafm/lIaUUpRoFUsyaBZHQKYJ3LRrrPd1fZQoaAZoCWgPQwhV+glnt1b2v5SGlFKUaBVLMmgWR0CmCZ+bd8ArdX2UKGgGaAloD0MI1ULJ5NRO8b+UhpRSlGgVSzJoFkdApgli/RE4N3V9lChoBmgJaA9DCNtN8E3TJwHAlIaUUpRoFUsyaBZHQKYLBZFG5MF1fZQoaAZoCWgPQwimtP6WADwEwJSGlFKUaBVLMmgWR0CmCsp1A7gbdX2UKGgGaAloD0MIDybFxyck9r+UhpRSlGgVSzJoFkdApgqNXgccVHV9lChoBmgJaA9DCPNYMzLIHfm/lIaUUpRoFUsyaBZHQKYKUKziS7p1fZQoaAZoCWgPQwie76fGS3cDwJSGlFKUaBVLMmgWR0CmDAEtNBWxdX2UKGgGaAloD0MIza/mAMEc/7+UhpRSlGgVSzJoFkdApgvGIRAbAHV9lChoBmgJaA9DCJi+1xAcV/u/lIaUUpRoFUsyaBZHQKYLiLxZuAJ1fZQoaAZoCWgPQwjrAIi7ehXmv5SGlFKUaBVLMmgWR0CmC0wtapxWdX2UKGgGaAloD0MIM2q+Sj52/L+UhpRSlGgVSzJoFkdApgzlrGipN3V9lChoBmgJaA9DCMMstHOahQHAlIaUUpRoFUsyaBZHQKYMqoFV1fV1fZQoaAZoCWgPQwijVwOUhtr/v5SGlFKUaBVLMmgWR0CmDG0Qsf7rdX2UKGgGaAloD0MISREZVvHG/L+UhpRSlGgVSzJoFkdApgwwV2zOX3V9lChoBmgJaA9DCPhsHRzszeq/lIaUUpRoFUsyaBZHQKYN3XRw6yV1fZQoaAZoCWgPQwj7rgj+t9Lxv5SGlFKUaBVLMmgWR0CmDaIp6QeWdX2UKGgGaAloD0MIEYqtoGnJ/L+UhpRSlGgVSzJoFkdApg1krmQr+nV9lChoBmgJaA9DCKOs30xMl/a/lIaUUpRoFUsyaBZHQKYNJ/bTMJR1fZQoaAZoCWgPQwi7ufjbnmD1v5SGlFKUaBVLMmgWR0CmDsJf6XSjdX2UKGgGaAloD0MIStOgaB4A9L+UhpRSlGgVSzJoFkdApg6HLNfPX3V9lChoBmgJaA9DCE2+2ebGtADAlIaUUpRoFUsyaBZHQKYOSeZG8VZ1fZQoaAZoCWgPQwgZjuczoH4BwJSGlFKUaBVLMmgWR0CmDg0h3aBadX2UKGgGaAloD0MIUd1c/G3P6r+UhpRSlGgVSzJoFkdApg/AkxASnXV9lChoBmgJaA9DCEqZ1NAG4O6/lIaUUpRoFUsyaBZHQKYPhXq7iAF1fZQoaAZoCWgPQwhE+YIWEjDzv5SGlFKUaBVLMmgWR0CmD0hnSOR1dX2UKGgGaAloD0MIBcB4Bg39BMCUhpRSlGgVSzJoFkdApg8LvsqrinV9lChoBmgJaA9DCP+VlSaloPu/lIaUUpRoFUsyaBZHQKYQzlRxcVx1fZQoaAZoCWgPQwgNb9bgfRUBwJSGlFKUaBVLMmgWR0CmEJOJLuhLdX2UKGgGaAloD0MIzo3pCUv88r+UhpRSlGgVSzJoFkdAphBW1QZXMnV9lChoBmgJaA9DCAYujzUjQ/6/lIaUUpRoFUsyaBZHQKYQGuOCGvh1fZQoaAZoCWgPQwjpCyHn/b/8v5SGlFKUaBVLMmgWR0CmEkTByjpLdX2UKGgGaAloD0MIstgmFY3VAcCUhpRSlGgVSzJoFkdAphIJ8D0UXnV9lChoBmgJaA9DCJaTUPpCiPK/lIaUUpRoFUsyaBZHQKYRzTuOS4h1fZQoaAZoCWgPQwgKFLGIYUf7v5SGlFKUaBVLMmgWR0CmEZFL39JjdX2UKGgGaAloD0MInbryWZ7HAMCUhpRSlGgVSzJoFkdAphOt16mfoXV9lChoBmgJaA9DCPWEJR5QNv6/lIaUUpRoFUsyaBZHQKYTcxqwhW51fZQoaAZoCWgPQwjoM6DejJr/v5SGlFKUaBVLMmgWR0CmEzaQ3gk1dX2UKGgGaAloD0MIKENVTKUfAcCUhpRSlGgVSzJoFkdAphL62OQyRHV9lChoBmgJaA9DCBhBYyZRL/i/lIaUUpRoFUsyaBZHQKYVGsxO+Ix1fZQoaAZoCWgPQwjLngQ256D+v5SGlFKUaBVLMmgWR0CmFOBs67uldX2UKGgGaAloD0MIYsCSq1hcAMCUhpRSlGgVSzJoFkdAphSjlA/s3XV9lChoBmgJaA9DCFJ/vcKCO/y/lIaUUpRoFUsyaBZHQKYUZ03fhuR1fZQoaAZoCWgPQwhC0NGqljT7v5SGlFKUaBVLMmgWR0CmFr7m2b5NdX2UKGgGaAloD0MI+s+aH3+p+r+UhpRSlGgVSzJoFkdAphaEcfeUIXV9lChoBmgJaA9DCDG2EOSgxPq/lIaUUpRoFUsyaBZHQKYWR+DvmYB1fZQoaAZoCWgPQwgM5q+QubLlv5SGlFKUaBVLMmgWR0CmFgxKpT/AdX2UKGgGaAloD0MITdwqiIFOAsCUhpRSlGgVSzJoFkdAphhTSVnmJXV9lChoBmgJaA9DCOiE0EGXUADAlIaUUpRoFUsyaBZHQKYYGMhHLA51fZQoaAZoCWgPQwhf7/54r/oGwJSGlFKUaBVLMmgWR0CmF9yLZSNwdX2UKGgGaAloD0MIonxBCwnY+b+UhpRSlGgVSzJoFkdApheg5xR2sHV9lChoBmgJaA9DCI+rkV1p2fa/lIaUUpRoFUsyaBZHQKYZ7mPHT7V1fZQoaAZoCWgPQwgeGED4UGL7v5SGlFKUaBVLMmgWR0CmGbQOe8PGdX2UKGgGaAloD0MIzc6idyrg+b+UhpRSlGgVSzJoFkdAphl4JkXk53V9lChoBmgJaA9DCOv/HObLS/i/lIaUUpRoFUsyaBZHQKYZPHJcPe51fZQoaAZoCWgPQwjsFRbcD3gCwJSGlFKUaBVLMmgWR0CmG0BsqJ/HdX2UKGgGaAloD0MIwlHy6hyD8L+UhpRSlGgVSzJoFkdAphsFGRV6vHV9lChoBmgJaA9DCFVq9kArsPK/lIaUUpRoFUsyaBZHQKYayAQxveh1fZQoaAZoCWgPQwjTvySVKWYFwJSGlFKUaBVLMmgWR0CmGouW8h9tdX2UKGgGaAloD0MIyeNp+YFrBMCUhpRSlGgVSzJoFkdAphwws5GSZHV9lChoBmgJaA9DCLpNuFfm7fa/lIaUUpRoFUsyaBZHQKYb9bxmTTx1fZQoaAZoCWgPQwgcz2dAvdn+v5SGlFKUaBVLMmgWR0CmG7kCmuTzdX2UKGgGaAloD0MI0ETY8PQqA8CUhpRSlGgVSzJoFkdApht8ZR8+inV9lChoBmgJaA9DCKmhDcAGhP2/lIaUUpRoFUsyaBZHQKYdJ0I1LrZ1fZQoaAZoCWgPQwgK9fQR+AP1v5SGlFKUaBVLMmgWR0CmHOv4EfT1dX2UKGgGaAloD0MI3V897lst/7+UhpRSlGgVSzJoFkdAphyukxh2GXV9lChoBmgJaA9DCGafxyjP/PG/lIaUUpRoFUsyaBZHQKYccc3EQ5F1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (593 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.838934095087461, "std_reward": 0.6436029737312023, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-18T15:04:50.439538"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a72dd90da8c6f76238ce6cec1081f2ef91e6e2e3b5c3dde371a55af8e0e5a9e4
3
+ size 3056