--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: RoBERTa-large-PM-M3-Voc-hf-finetuned-ner results: [] --- # RoBERTa-large-PM-M3-Voc-hf-finetuned-ner This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2320 - Precision: 0.7794 - Recall: 0.9175 - F1: 0.8429 - Accuracy: 0.9470 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 36 | 1.0441 | 0.2844 | 0.0828 | 0.1283 | 0.7449 | | No log | 2.0 | 72 | 0.7648 | 0.3878 | 0.5899 | 0.4680 | 0.7606 | | No log | 3.0 | 108 | 0.5539 | 0.5096 | 0.6022 | 0.5520 | 0.8166 | | No log | 4.0 | 144 | 0.6093 | 0.4714 | 0.7188 | 0.5694 | 0.7981 | | No log | 5.0 | 180 | 0.5084 | 0.5185 | 0.7530 | 0.6141 | 0.8381 | | No log | 6.0 | 216 | 0.3945 | 0.6099 | 0.7329 | 0.6658 | 0.8775 | | No log | 7.0 | 252 | 0.4960 | 0.5273 | 0.7961 | 0.6344 | 0.8458 | | No log | 8.0 | 288 | 0.3364 | 0.6501 | 0.8013 | 0.7178 | 0.9002 | | No log | 9.0 | 324 | 0.3166 | 0.6601 | 0.8418 | 0.7399 | 0.9092 | | No log | 10.0 | 360 | 0.2691 | 0.7087 | 0.8470 | 0.7717 | 0.9233 | | No log | 11.0 | 396 | 0.2663 | 0.7215 | 0.8652 | 0.7868 | 0.9290 | | No log | 12.0 | 432 | 0.2877 | 0.7138 | 0.8904 | 0.7924 | 0.9238 | | No log | 13.0 | 468 | 0.2712 | 0.7353 | 0.8990 | 0.8090 | 0.9321 | | 0.4329 | 14.0 | 504 | 0.2485 | 0.7511 | 0.8990 | 0.8184 | 0.9387 | | 0.4329 | 15.0 | 540 | 0.2236 | 0.7859 | 0.9056 | 0.8416 | 0.9474 | | 0.4329 | 16.0 | 576 | 0.2392 | 0.7696 | 0.9131 | 0.8352 | 0.9439 | | 0.4329 | 17.0 | 612 | 0.2420 | 0.7684 | 0.9157 | 0.8356 | 0.9438 | | 0.4329 | 18.0 | 648 | 0.2375 | 0.7708 | 0.9172 | 0.8377 | 0.9445 | | 0.4329 | 19.0 | 684 | 0.2299 | 0.7832 | 0.9179 | 0.8452 | 0.9478 | | 0.4329 | 20.0 | 720 | 0.2320 | 0.7794 | 0.9175 | 0.8429 | 0.9470 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1