mindwrapped
commited on
Commit
•
c8a6710
1
Parent(s):
f221b87
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +28 -28
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +2 -2
- ppo-LunarLander-v2/system_info.txt +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 261.37 +/- 37.95
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4bc30cc950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4bc30cc9e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4bc30cca70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4bc30ccb00>", "_build": "<function ActorCriticPolicy._build at 0x7f4bc30ccb90>", "forward": "<function ActorCriticPolicy.forward at 0x7f4bc30ccc20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4bc30cccb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4bc30ccd40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4bc30ccdd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4bc30cce60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4bc30ccef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4bc3110d20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2800000, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653014073.8073924, "learning_rate": 0.0003, "tensorboard_log": "runs/mf2el1p0", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2KGL174Ji6KlRVPIzCBTZrOvm6oLQBNQAAAAAAAAAAIKBEvqU2jD/qDAm/4MYPvwDiq77DSZe+AAAAAAAAAAAz9389rC2SPwovTT4Ol/O+btoYPrY3LD0AAAAAAAAAADPJ9b37ciY/XrTgPSSe976yTcq9BsnOPQAAAAAAAAAAxgIZPi/4dj/YdX49IMr0vtTMmT4WR/y9AAAAAAAAAADAFek9NekgPmjPd77u4eO+LMbnvfSQlbwAAAAAAAAAAM1+prwvQhU/Qu65vYtv6r44iKa7DkoqvQAAAAAAAAAAZoo6PCkUY7q45ls57/hTNAOy7LoF1YC4AACAPwAAgD+agVq75N21P0qvrL0+MZA9y3J5Ox28mjwAAAAAAAAAAACzu7zhHIy6ShPZtIJ38q+nHMa6oTohNAAAgD8AAIA/M+NmOylAMbrDvxy7tuaNPIwNmzrVone9AACAPwAAgD+a4R+8PVwlu+i6Uzu1UJU8vNALPDKZgL0AAIA/AACAPzOxsbyzHD4/2hG2vZqK7748Ohm9gJ0OvQAAAAAAAAAAAGI9vOwYzrviRWQ+olCYPAQfRL1yp389AACAPwAAgD/zAQm+ogsIP0bIYj5GIO++TmCDvXpujz0AAAAAAAAAAAAwCDspokk7siTgvXwHhL6T4h++w/WVPwAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.07157333333333338, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgq0SLE4HcECUhpRSlIwBbJRL5owBdJRHQKEacw5/9YR1fZQoaAZoCWgPQwgQIEPHDpBxQJSGlFKUaBVLymgWR0ChGqY/Vy3kdX2UKGgGaAloD0MIBYcXRCTnbkCUhpRSlGgVS9VoFkdAoRrKNKh+OXV9lChoBmgJaA9DCJqYLsRqe3FAlIaUUpRoFUvHaBZHQKEbAMIeHSF1fZQoaAZoCWgPQwjjpgaaD5lyQJSGlFKUaBVLy2gWR0ChGzF9KEnLdX2UKGgGaAloD0MIkq8EUqKWcUCUhpRSlGgVS/NoFkdAoRtjpgTh53V9lChoBmgJaA9DCCy4H/AA/HJAlIaUUpRoFUvbaBZHQKEbqRTS9dx1fZQoaAZoCWgPQwhtIF1sWvBwQJSGlFKUaBVL5WgWR0ChG67RF7UodX2UKGgGaAloD0MI1UDzOXd9ckCUhpRSlGgVS+NoFkdAoRvJydWhiHV9lChoBmgJaA9DCPEPW3p0r3JAlIaUUpRoFUvKaBZHQKEb6oddVvN1fZQoaAZoCWgPQwj7OnDOyFdxQJSGlFKUaBVLy2gWR0ChHBFq8DjjdX2UKGgGaAloD0MIxlIkXwnFc0CUhpRSlGgVS/VoFkdAoRwsmv4dqHV9lChoBmgJaA9DCAADQYDM5XJAlIaUUpRoFUvyaBZHQKEcMsNDtw91fZQoaAZoCWgPQwgMW7OVFy9xQJSGlFKUaBVLzWgWR0ChHEQHZ9NOdX2UKGgGaAloD0MIP+YDAh2JcUCUhpRSlGgVS85oFkdAoRyWJFb3XnV9lChoBmgJaA9DCCxHyECe2nNAlIaUUpRoFUvZaBZHQKEcmMm4RVZ1fZQoaAZoCWgPQwjnb0IhgrBuQJSGlFKUaBVL12gWR0ChHJ5fUnXvdX2UKGgGaAloD0MIN1X3yGY2cUCUhpRSlGgVS8FoFkdAoRzJUtI07HV9lChoBmgJaA9DCKm8HeG0xnBAlIaUUpRoFUvTaBZHQKEc0W/JvHd1fZQoaAZoCWgPQwg0uRgD69hyQJSGlFKUaBVL0mgWR0ChHU0SAYpEdX2UKGgGaAloD0MISn1Z2ikKbkCUhpRSlGgVS+hoFkdAoR1d6/qPfnV9lChoBmgJaA9DCMqNImvN9nJAlIaUUpRoFUvSaBZHQKEdfpwCKaZ1fZQoaAZoCWgPQwhf7pOjwG1xQJSGlFKUaBVLzGgWR0ChHbP6j323dX2UKGgGaAloD0MIu3zrwzpHc0CUhpRSlGgVS+JoFkdAoR3kYl6Z6XV9lChoBmgJaA9DCBCWsaEbBm9AlIaUUpRoFUvQaBZHQKEd9SG8Emp1fZQoaAZoCWgPQwjzyYrhaoZyQJSGlFKUaBVL6mgWR0ChHhq+zt1IdX2UKGgGaAloD0MIttlYifmVcUCUhpRSlGgVS+loFkdAoR5qEcsDn3V9lChoBmgJaA9DCOPhPQcWSXNAlIaUUpRoFUvkaBZHQKEefOi35N51fZQoaAZoCWgPQwjmPGNfMj1wQJSGlFKUaBVL7WgWR0ChHpFQMx46dX2UKGgGaAloD0MI6xwDsleLc0CUhpRSlGgVS+toFkdAoR6m7xusLnV9lChoBmgJaA9DCIqQup09h3JAlIaUUpRoFUvNaBZHQKEesREnb7F1fZQoaAZoCWgPQwhyNh0B3GFyQJSGlFKUaBVL2WgWR0ChHtTQE6kqdX2UKGgGaAloD0MIZHjsZ3Fmc0CUhpRSlGgVS91oFkdAoR7YU34sVnV9lChoBmgJaA9DCNzxJr/FRHJAlIaUUpRoFUvuaBZHQKEka2qDK5l1fZQoaAZoCWgPQwhsX0Av3FdzQJSGlFKUaBVL7WgWR0ChJHT9sJpndX2UKGgGaAloD0MIzXSvkzqqcUCUhpRSlGgVS8ZoFkdAoSSQgzP8h3V9lChoBmgJaA9DCOHra13qvHJAlIaUUpRoFUvNaBZHQKEkr1ie/Yd1fZQoaAZoCWgPQwhoBYasLlhyQJSGlFKUaBVLx2gWR0ChJL8Co0hvdX2UKGgGaAloD0MIs5dtpy0mb0CUhpRSlGgVS89oFkdAoSUR+hGpdnV9lChoBmgJaA9DCKs97IUCZ1ZAlIaUUpRoFUuQaBZHQKElHLSuyNZ1fZQoaAZoCWgPQwhyxFp8SuxyQJSGlFKUaBVLvWgWR0ChJSrvTgEVdX2UKGgGaAloD0MIjbYqiWzNcECUhpRSlGgVS9loFkdAoSVi4x1xKnV9lChoBmgJaA9DCEt1AS9zN3NAlIaUUpRoFUvIaBZHQKElb3/Pw/h1fZQoaAZoCWgPQwjBV3TrdVdyQJSGlFKUaBVLxmgWR0ChJeY0Mw10dX2UKGgGaAloD0MIjukJS3wkcUCUhpRSlGgVS9ZoFkdAoSX0DSw4bXV9lChoBmgJaA9DCHF2a5nM6XNAlIaUUpRoFUvraBZHQKEmGPfbblB1fZQoaAZoCWgPQwj/zCA+sJBzQJSGlFKUaBVL5GgWR0ChJit03fhudX2UKGgGaAloD0MIrrfNVEjccUCUhpRSlGgVS9ZoFkdAoSY56D5CW3V9lChoBmgJaA9DCFlpUgr6XnBAlIaUUpRoFUvcaBZHQKEmRkvsZ511fZQoaAZoCWgPQwjp19ZP/8hxQJSGlFKUaBVL12gWR0ChJqJD/lySdX2UKGgGaAloD0MIYTjXMEN4cUCUhpRSlGgVS8xoFkdAoSanhfjS5XV9lChoBmgJaA9DCOmedY0WcG5AlIaUUpRoFUvNaBZHQKEmy1UEPlN1fZQoaAZoCWgPQwg8LxUb81FvQJSGlFKUaBVL4mgWR0ChJxQDNhVmdX2UKGgGaAloD0MICHWRQln5cECUhpRSlGgVS8toFkdAoScxCD28I3V9lChoBmgJaA9DCB8vpMNDQW9AlIaUUpRoFUvQaBZHQKEnNAzHjp91fZQoaAZoCWgPQwi+S6lLRmRzQJSGlFKUaBVNJQFoFkdAoSdxu89Oh3V9lChoBmgJaA9DCEUqjC1E03FAlIaUUpRoFUvMaBZHQKEne4zabnZ1fZQoaAZoCWgPQwjbwB2oU8hvQJSGlFKUaBVL5WgWR0ChJ36/h2nsdX2UKGgGaAloD0MIDAQBMrTyckCUhpRSlGgVTQkBaBZHQKEoAfYjB2x1fZQoaAZoCWgPQwjrAfOQqclvQJSGlFKUaBVL1WgWR0ChKAHSv1UVdX2UKGgGaAloD0MInaBNDh8mcUCUhpRSlGgVS8xoFkdAoSgrMJQcgnV9lChoBmgJaA9DCKfNOA2RXnBAlIaUUpRoFUvMaBZHQKEoNyLAHml1fZQoaAZoCWgPQwhI+rSKfoFyQJSGlFKUaBVL2GgWR0ChKDc94eLfdX2UKGgGaAloD0MI/p3t0VsOckCUhpRSlGgVS+poFkdAoSg/jENvwXV9lChoBmgJaA9DCKOTpda7JXNAlIaUUpRoFUvWaBZHQKEoXupCKJl1fZQoaAZoCWgPQwgnoImwoatxQJSGlFKUaBVLy2gWR0ChKJh3JPqLdX2UKGgGaAloD0MIBYcXRCRpcUCUhpRSlGgVS+VoFkdAoSjQIMSbpnV9lChoBmgJaA9DCILjMm7q/HBAlIaUUpRoFUvZaBZHQKEo2VuaWop1fZQoaAZoCWgPQwh/iXjr/L5yQJSGlFKUaBVLtmgWR0ChKSrV4HHFdX2UKGgGaAloD0MINNb+zjYCckCUhpRSlGgVS9xoFkdAoSlADzRQanV9lChoBmgJaA9DCNf7jXZcdHNAlIaUUpRoFUveaBZHQKEpQhDgIhR1fZQoaAZoCWgPQwiKc9TRMS9yQJSGlFKUaBVL8mgWR0ChKVdc0LtvdX2UKGgGaAloD0MI0VeQZmz3cUCUhpRSlGgVS9RoFkdAoSlmz0HyE3V9lChoBmgJaA9DCEG7Q4oBpVFAlIaUUpRoFUuLaBZHQKEphrcCYC11fZQoaAZoCWgPQwhYVS+/ExdzQJSGlFKUaBVL4WgWR0ChKYrl/6O6dX2UKGgGaAloD0MImu0KfXBZcUCUhpRSlGgVS8poFkdAoSnVgfEGaHV9lChoBmgJaA9DCAFsQIS46m5AlIaUUpRoFUvUaBZHQKEp6d7OVxF1fZQoaAZoCWgPQwjylNV0/fNxQJSGlFKUaBVL12gWR0ChKiCt7rs0dX2UKGgGaAloD0MIFxIwurw9c0CUhpRSlGgVS9doFkdAoSowr+YMOXV9lChoBmgJaA9DCAeVuI6xCXJAlIaUUpRoFUvnaBZHQKEqVVNpM6B1fZQoaAZoCWgPQwgIA8+9h/1vQJSGlFKUaBVL6GgWR0ChKnuC5EtvdX2UKGgGaAloD0MId2ouN5g3b0CUhpRSlGgVS81oFkdAoSquY0EX+HV9lChoBmgJaA9DCPt1pzvPV3JAlIaUUpRoFU0EAWgWR0ChKvoTGo73dX2UKGgGaAloD0MIKzI6IEk5cUCUhpRSlGgVS+xoFkdAoSsDW3BpH3V9lChoBmgJaA9DCIi6D0CqynFAlIaUUpRoFUvBaBZHQKErBkZJkG11fZQoaAZoCWgPQwjNHmgFRjtyQJSGlFKUaBVLzGgWR0ChKwtBfKISdX2UKGgGaAloD0MIHQBxV69BcUCUhpRSlGgVS9JoFkdAoSsukHlfZ3V9lChoBmgJaA9DCEksKXffrXFAlIaUUpRoFUvgaBZHQKErXgx8D0V1fZQoaAZoCWgPQwic3O9QFEFwQJSGlFKUaBVL2WgWR0ChK1+qrBCVdX2UKGgGaAloD0MIpSxDHOv3cUCUhpRSlGgVS9poFkdAoSuDCWNWEXV9lChoBmgJaA9DCGvVrglps29AlIaUUpRoFUvZaBZHQKErhhXKbKB1fZQoaAZoCWgPQwiCV8udmVlxQJSGlFKUaBVL12gWR0ChK85/smfHdX2UKGgGaAloD0MIzEQRUvcOcUCUhpRSlGgVS+1oFkdAoSwnRRdhRnV9lChoBmgJaA9DCOnVAKUhxm9AlIaUUpRoFUvgaBZHQKEsO/bj94x1fZQoaAZoCWgPQwi5+rFJ/q1yQJSGlFKUaBVL0WgWR0ChLEos7MgVdX2UKGgGaAloD0MIWABTBo5OcUCUhpRSlGgVS8poFkdAoSxgVsUIs3V9lChoBmgJaA9DCL06x4Bs0XFAlIaUUpRoFUv1aBZHQKEsfdVvMr51fZQoaAZoCWgPQwjRIXAkUIJvQJSGlFKUaBVL12gWR0ChLLeuFHrhdX2UKGgGaAloD0MI6GnAIOm+UUCUhpRSlGgVS45oFkdAoSy8xdpqRHV9lChoBmgJaA9DCGST/Ijf33FAlIaUUpRoFUvLaBZHQKEs95AQg9x1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 680, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fccb306d560>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fccb306d5f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fccb306d680>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fccb306d710>", "_build": "<function ActorCriticPolicy._build at 0x7fccb306d7a0>", "forward": "<function ActorCriticPolicy.forward at 0x7fccb306d830>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fccb306d8c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fccb306d950>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fccb306d9e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fccb306da70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fccb306db00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fccb3045120>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 8, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1654479454.9559002, "learning_rate": 0.0003, "tensorboard_log": "runs/ejyd6eyf", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwhLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAQAAcz/ZPSlId7rXCSyzC3byLoNbxTrbis8zAACAPwAAgD+aO928XlihP8ZuK74TqQC/jUz9u9UgV70AAAAAAAAAAKYLhL0/j6U/ElMNv6+kD79C1na8xugkvgAAAAAAAAAAzZHDvOdzDz5SxQ0+FXOTviq0Sr3DvNI7AAAAAAAAAAB6UEM+qNybvGtmYj16rcu7F6UUvnkdobwAAAAAAACAPwgNv75T4n8/bgnQviyyNL/BSbG+ZADBuwAAAAAAAAAAgJa5PcOJdbwN8i69I/zsPD7z4D3bbb69AACAPwAAAAC6MjI+9DSPP7YDDj7varS+Hb00PgMunbwAAAAAAAAAAJR0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVkAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwiFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYi4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0005760000000000209, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVZRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgNO7eH+HckCUhpRSlIwBbJRNKgGMAXSUR0CSyndGiHqNdX2UKGgGaAloD0MIXwzlRHvDcUCUhpRSlGgVTRcBaBZHQJLKlZ/0/W11fZQoaAZoCWgPQwjpYtNKoRxxQJSGlFKUaBVNAAFoFkdAkswZFspG4XV9lChoBmgJaA9DCKzHfau1pHBAlIaUUpRoFU0AAWgWR0CSzMbPQfITdX2UKGgGaAloD0MIUoAomLEpb0CUhpRSlGgVTQ4BaBZHQJLM11W8yvd1fZQoaAZoCWgPQwhMpZ9wdgpvQJSGlFKUaBVNCwFoFkdAks1xJqZc9nV9lChoBmgJaA9DCDfeHRkriW5AlIaUUpRoFU0EAWgWR0CSzYj3mFJydX2UKGgGaAloD0MIHJqy088RcECUhpRSlGgVS/xoFkdAks2h46fapXV9lChoBmgJaA9DCExuFFkrE3BAlIaUUpRoFU0qAWgWR0CSzzWuHN5ddX2UKGgGaAloD0MIG9R+a+eeckCUhpRSlGgVTVABaBZHQJLZNJrcj7h1fZQoaAZoCWgPQwgRGOsbmHBxQJSGlFKUaBVNBAFoFkdAktnD3M6ikHV9lChoBmgJaA9DCA4UeCcfa3FAlIaUUpRoFU0KAWgWR0CS2p6pHZsbdX2UKGgGaAloD0MItW/ur94oc0CUhpRSlGgVS/NoFkdAktrNgKF7D3V9lChoBmgJaA9DCDT1ukXgcnFAlIaUUpRoFU02AWgWR0CS20DZlFtsdX2UKGgGaAloD0MIFHtoH6tvckCUhpRSlGgVTSkBaBZHQJLbu+qR2bJ1fZQoaAZoCWgPQwii7C3lfP1xQJSGlFKUaBVNBAFoFkdAkt2FpCa7VnV9lChoBmgJaA9DCHIaogo/rnJAlIaUUpRoFU1PAWgWR0CS3l2GqPwNdX2UKGgGaAloD0MI1IBB0qdkb0CUhpRSlGgVTRQBaBZHQJLecBLf1pV1fZQoaAZoCWgPQwgqjZjZ569xQJSGlFKUaBVL1mgWR0CS3t20AtFsdX2UKGgGaAloD0MIrmad8b0mcUCUhpRSlGgVTQsBaBZHQJLfDbZezD51fZQoaAZoCWgPQwgW31D4rOdxQJSGlFKUaBVL1WgWR0CS30p5u63BdX2UKGgGaAloD0MIF/GdmLXhcUCUhpRSlGgVTRsBaBZHQJLfbDhtLth1fZQoaAZoCWgPQwiu1onLcYpuQJSGlFKUaBVL8mgWR0CS4TnRb8m8dX2UKGgGaAloD0MIFymUha+tbUCUhpRSlGgVS/RoFkdAkuIklzEJjXV9lChoBmgJaA9DCEMaFTiZvHBAlIaUUpRoFU0KAWgWR0CS4nKUFB6bdX2UKGgGaAloD0MIvTlcq/0VckCUhpRSlGgVTQwBaBZHQJLjHcfvF3p1fZQoaAZoCWgPQwi7e4DuC05xQJSGlFKUaBVNJQFoFkdAkuNLzwtrbnV9lChoBmgJaA9DCDc5fNIJPm5AlIaUUpRoFU0NAWgWR0CS445zYEntdX2UKGgGaAloD0MIGhcOhCQcckCUhpRSlGgVTSEBaBZHQJLjr9pAUtZ1fZQoaAZoCWgPQwiqKck6nNNxQJSGlFKUaBVL/GgWR0CS5RYQJ5VwdX2UKGgGaAloD0MIzlSIR6LccUCUhpRSlGgVS/doFkdAkuXIcR15jnV9lChoBmgJaA9DCBheSfLca2JAlIaUUpRoFU3oA2gWR0CS5ukHUtqYdX2UKGgGaAloD0MIu9QI/QwickCUhpRSlGgVTTgBaBZHQJLnSaJAMUh1fZQoaAZoCWgPQwiIuDmVTElwQJSGlFKUaBVL82gWR0CS51wdbPhRdX2UKGgGaAloD0MIaeGyCpsOckCUhpRSlGgVTREBaBZHQJLnZFSbYsd1fZQoaAZoCWgPQwj9ag4QTL1tQJSGlFKUaBVL9GgWR0CS54LkjopydX2UKGgGaAloD0MIXAGFevrDbUCUhpRSlGgVTTMBaBZHQJLn+5sj3VV1fZQoaAZoCWgPQwiA12fO+upvQJSGlFKUaBVNFAFoFkdAkvKv3i704HV9lChoBmgJaA9DCNcTXRf+qnBAlIaUUpRoFUvwaBZHQJLy4bXHzYp1fZQoaAZoCWgPQwjiyW5m9FlIQJSGlFKUaBVL1GgWR0CS88OOsDGMdX2UKGgGaAloD0MIGsHG9W9sb0CUhpRSlGgVTRkBaBZHQJL0ep4rz5J1fZQoaAZoCWgPQwgOoyB4PKNxQJSGlFKUaBVNCgFoFkdAkvSjo2XLNnV9lChoBmgJaA9DCOFFX0EaVHNAlIaUUpRoFUv5aBZHQJL1JJI1+Ap1fZQoaAZoCWgPQwjzHfzEgQ9wQJSGlFKUaBVNKAFoFkdAkvVLKifxt3V9lChoBmgJaA9DCGtiga9oFXFAlIaUUpRoFU0+AWgWR0CS9WI7Njb0dX2UKGgGaAloD0MIlpS7z7ERcUCUhpRSlGgVTRcBaBZHQJL2/C3w1BN1fZQoaAZoCWgPQwhtUzwuantzQJSGlFKUaBVNHgFoFkdAkvdF8LKFI3V9lChoBmgJaA9DCAEwnkGDZXJAlIaUUpRoFU0PAWgWR0CS9/ntfG+9dX2UKGgGaAloD0MIdXedDTlic0CUhpRSlGgVS/doFkdAkvg/YraufXV9lChoBmgJaA9DCLw7MlYbinJAlIaUUpRoFU0KAWgWR0CS+Y12aDwpdX2UKGgGaAloD0MIfH+D9mrTcUCUhpRSlGgVTSUBaBZHQJL545IYm9h1fZQoaAZoCWgPQwjwbfqzX+NxQJSGlFKUaBVNHgFoFkdAkvoTp5eJHnV9lChoBmgJaA9DCELqdvZVBHFAlIaUUpRoFU1cAWgWR0CS+kuTRplCdX2UKGgGaAloD0MIdPBMaJIBcECUhpRSlGgVS/hoFkdAkvtnd43WF3V9lChoBmgJaA9DCGtI3GPp9W1AlIaUUpRoFU0vAWgWR0CS/AY3vQWvdX2UKGgGaAloD0MIhPHTuDezbkCUhpRSlGgVTSoBaBZHQJL9Wn+AEuB1fZQoaAZoCWgPQwiyg0pch69wQJSGlFKUaBVNQAFoFkdAkv1rq+rU9nV9lChoBmgJaA9DCC2xMhp5zHBAlIaUUpRoFU0cAWgWR0CS/ll1r6+GdX2UKGgGaAloD0MIKgMHtDRKckCUhpRSlGgVTRQBaBZHQJL+quQp4KR1fZQoaAZoCWgPQwgYlGk0+VBxQJSGlFKUaBVNHgFoFkdAkv6r7Gecx3V9lChoBmgJaA9DCF4UPfDxnHFAlIaUUpRoFU08AWgWR0CS/35sTFl1dX2UKGgGaAloD0MIfAxWnCpKcECUhpRSlGgVTQMBaBZHQJL/u5mRNh51fZQoaAZoCWgPQwiRLGACN6tyQJSGlFKUaBVL92gWR0CTABsyzolldX2UKGgGaAloD0MIoQ+WsWFycECUhpRSlGgVTQ4BaBZHQJMBpMQEpy91fZQoaAZoCWgPQwhQ/Bhzl2RxQJSGlFKUaBVNFQFoFkdAkwHVSsKb8XV9lChoBmgJaA9DCDzAkxaudm5AlIaUUpRoFUvhaBZHQJMB1id8Rcx1fZQoaAZoCWgPQwiNDHIX4VZxQJSGlFKUaBVNDwFoFkdAkwLikXUH6nV9lChoBmgJaA9DCGIP7WOFanBAlIaUUpRoFUv9aBZHQJMM28Fpwjt1fZQoaAZoCWgPQwjgoL36eK9yQJSGlFKUaBVNNgFoFkdAkwzpIczZYnV9lChoBmgJaA9DCLQ7pBggwXFAlIaUUpRoFU0BAWgWR0CTDSOgxrSFdX2UKGgGaAloD0MIVvMckS8ZckCUhpRSlGgVTREBaBZHQJMNsa72+PB1fZQoaAZoCWgPQwgiizTxTg1wQJSGlFKUaBVL22gWR0CTDpq9oN/fdX2UKGgGaAloD0MIxAsiUlO5b0CUhpRSlGgVS/toFkdAkw8ok3S8anV9lChoBmgJaA9DCBXJVwKpGG1AlIaUUpRoFU0SAWgWR0CTD1x2jfvXdX2UKGgGaAloD0MIbmjKTv8lckCUhpRSlGgVTQMBaBZHQJMQT6+FlCl1fZQoaAZoCWgPQwjqIoWy8PJyQJSGlFKUaBVL32gWR0CTEFrf+CK8dX2UKGgGaAloD0MI3nNgOQLQcECUhpRSlGgVTQABaBZHQJMQx9LHuJF1fZQoaAZoCWgPQwif46PFmc1wQJSGlFKUaBVNAgFoFkdAkxEt0eU6gnV9lChoBmgJaA9DCKWFyypsMXFAlIaUUpRoFUvTaBZHQJMR9TBInSh1fZQoaAZoCWgPQwgsK01KgTBwQJSGlFKUaBVNKgFoFkdAkxJuEqUeMnV9lChoBmgJaA9DCLqhKTu9t3BAlIaUUpRoFU0oAWgWR0CTFApVCHARdX2UKGgGaAloD0MIE/QXegSOcECUhpRSlGgVTQ8BaBZHQJMUuEBbOeJ1fZQoaAZoCWgPQwgH6/8c5l5yQJSGlFKUaBVNDQFoFkdAkxS8yeqaPXV9lChoBmgJaA9DCIwTX+1opnBAlIaUUpRoFU1nAWgWR0CTFPPEKmbcdX2UKGgGaAloD0MIVTNrKeB8ckCUhpRSlGgVTQ4BaBZHQJMVLf/FR511fZQoaAZoCWgPQwivl6YIcMlyQJSGlFKUaBVNCgFoFkdAkxVsBZIQOHV9lChoBmgJaA9DCLJnz2XqCnFAlIaUUpRoFU0AAWgWR0CTFgO09hZydX2UKGgGaAloD0MID5pd99a1bUCUhpRSlGgVS/toFkdAkxZVoL5RCXV9lChoBmgJaA9DCG1VEtlHwHJAlIaUUpRoFUv3aBZHQJMXtiiItUZ1fZQoaAZoCWgPQwhVF/AywytyQJSGlFKUaBVL32gWR0CTGCDifg76dX2UKGgGaAloD0MI7//jhAn4cUCUhpRSlGgVTQ4BaBZHQJMYqK+BYmt1fZQoaAZoCWgPQwikp8gh4ghvQJSGlFKUaBVL+2gWR0CTGOa/h2nsdX2UKGgGaAloD0MIUInrGFdJc0CUhpRSlGgVTR4BaBZHQJMY9ikO7QN1fZQoaAZoCWgPQwh7wac5ea9wQJSGlFKUaBVNDQFoFkdAkxlq3/givHV9lChoBmgJaA9DCCZWRiMfF3JAlIaUUpRoFU0GAWgWR0CTGepH7P6bdX2UKGgGaAloD0MIlDKpoU2tcECUhpRSlGgVTRYBaBZHQJMagyvcJt11fZQoaAZoCWgPQwjuzATDuQpOQJSGlFKUaBVL32gWR0CTJcEXcgyNdX2UKGgGaAloD0MIW11OCchcckCUhpRSlGgVTSwBaBZHQJMl27jDKo11fZQoaAZoCWgPQwi+amXCLx5yQJSGlFKUaBVNDAFoFkdAkybQLApKBnV9lChoBmgJaA9DCBWqm4s/R3JAlIaUUpRoFUvxaBZHQJMm6YNRWLh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 488, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a18cba386e84271c49282fe055714ae1850105bb19e55ed257f1a9d16471981
|
3 |
+
size 143776
|
ppo-LunarLander-v2/data
CHANGED
@@ -1,28 +1,28 @@
|
|
1 |
{
|
2 |
"policy_class": {
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
-
":serialized:": "
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
23 |
"observation_space": {
|
24 |
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
-
":serialized:": "
|
26 |
"dtype": "float32",
|
27 |
"_shape": [
|
28 |
8
|
@@ -35,47 +35,47 @@
|
|
35 |
},
|
36 |
"action_space": {
|
37 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
-
":serialized:": "
|
39 |
"n": 4,
|
40 |
"_shape": [],
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
44 |
-
"n_envs":
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
-
"tensorboard_log": "runs/
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
-
":serialized:": "
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
-
":serialized:": "
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": 0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
-
":serialized:": "
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
@@ -86,7 +86,7 @@
|
|
86 |
"n_epochs": 4,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
-
":serialized:": "
|
90 |
},
|
91 |
"clip_range_vf": null,
|
92 |
"normalize_advantage": true,
|
|
|
1 |
{
|
2 |
"policy_class": {
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fccb306d560>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fccb306d5f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fccb306d680>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fccb306d710>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fccb306d7a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fccb306d830>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fccb306d8c0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fccb306d950>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fccb306d9e0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fccb306da70>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fccb306db00>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fccb3045120>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
23 |
"observation_space": {
|
24 |
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
"dtype": "float32",
|
27 |
"_shape": [
|
28 |
8
|
|
|
35 |
},
|
36 |
"action_space": {
|
37 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
"n": 4,
|
40 |
"_shape": [],
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
44 |
+
"n_envs": 8,
|
45 |
+
"num_timesteps": 1000000,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1654479454.9559002,
|
51 |
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": "runs/ejyd6eyf",
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVjQEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwhLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAQAAcz/ZPSlId7rXCSyzC3byLoNbxTrbis8zAACAPwAAgD+aO928XlihP8ZuK74TqQC/jUz9u9UgV70AAAAAAAAAAKYLhL0/j6U/ElMNv6+kD79C1na8xugkvgAAAAAAAAAAzZHDvOdzDz5SxQ0+FXOTviq0Sr3DvNI7AAAAAAAAAAB6UEM+qNybvGtmYj16rcu7F6UUvnkdobwAAAAAAACAPwgNv75T4n8/bgnQviyyNL/BSbG+ZADBuwAAAAAAAAAAgJa5PcOJdbwN8i69I/zsPD7z4D3bbb69AACAPwAAAAC6MjI+9DSPP7YDDj7varS+Hb00PgMunbwAAAAAAAAAAJR0lGIu"
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVkAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwiFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYi4="
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": 0.0005760000000000209,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVZRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgNO7eH+HckCUhpRSlIwBbJRNKgGMAXSUR0CSyndGiHqNdX2UKGgGaAloD0MIXwzlRHvDcUCUhpRSlGgVTRcBaBZHQJLKlZ/0/W11fZQoaAZoCWgPQwjpYtNKoRxxQJSGlFKUaBVNAAFoFkdAkswZFspG4XV9lChoBmgJaA9DCKzHfau1pHBAlIaUUpRoFU0AAWgWR0CSzMbPQfITdX2UKGgGaAloD0MIUoAomLEpb0CUhpRSlGgVTQ4BaBZHQJLM11W8yvd1fZQoaAZoCWgPQwhMpZ9wdgpvQJSGlFKUaBVNCwFoFkdAks1xJqZc9nV9lChoBmgJaA9DCDfeHRkriW5AlIaUUpRoFU0EAWgWR0CSzYj3mFJydX2UKGgGaAloD0MIHJqy088RcECUhpRSlGgVS/xoFkdAks2h46fapXV9lChoBmgJaA9DCExuFFkrE3BAlIaUUpRoFU0qAWgWR0CSzzWuHN5ddX2UKGgGaAloD0MIG9R+a+eeckCUhpRSlGgVTVABaBZHQJLZNJrcj7h1fZQoaAZoCWgPQwgRGOsbmHBxQJSGlFKUaBVNBAFoFkdAktnD3M6ikHV9lChoBmgJaA9DCA4UeCcfa3FAlIaUUpRoFU0KAWgWR0CS2p6pHZsbdX2UKGgGaAloD0MItW/ur94oc0CUhpRSlGgVS/NoFkdAktrNgKF7D3V9lChoBmgJaA9DCDT1ukXgcnFAlIaUUpRoFU02AWgWR0CS20DZlFtsdX2UKGgGaAloD0MIFHtoH6tvckCUhpRSlGgVTSkBaBZHQJLbu+qR2bJ1fZQoaAZoCWgPQwii7C3lfP1xQJSGlFKUaBVNBAFoFkdAkt2FpCa7VnV9lChoBmgJaA9DCHIaogo/rnJAlIaUUpRoFU1PAWgWR0CS3l2GqPwNdX2UKGgGaAloD0MI1IBB0qdkb0CUhpRSlGgVTRQBaBZHQJLecBLf1pV1fZQoaAZoCWgPQwgqjZjZ569xQJSGlFKUaBVL1mgWR0CS3t20AtFsdX2UKGgGaAloD0MIrmad8b0mcUCUhpRSlGgVTQsBaBZHQJLfDbZezD51fZQoaAZoCWgPQwgW31D4rOdxQJSGlFKUaBVL1WgWR0CS30p5u63BdX2UKGgGaAloD0MIF/GdmLXhcUCUhpRSlGgVTRsBaBZHQJLfbDhtLth1fZQoaAZoCWgPQwiu1onLcYpuQJSGlFKUaBVL8mgWR0CS4TnRb8m8dX2UKGgGaAloD0MIFymUha+tbUCUhpRSlGgVS/RoFkdAkuIklzEJjXV9lChoBmgJaA9DCEMaFTiZvHBAlIaUUpRoFU0KAWgWR0CS4nKUFB6bdX2UKGgGaAloD0MIvTlcq/0VckCUhpRSlGgVTQwBaBZHQJLjHcfvF3p1fZQoaAZoCWgPQwi7e4DuC05xQJSGlFKUaBVNJQFoFkdAkuNLzwtrbnV9lChoBmgJaA9DCDc5fNIJPm5AlIaUUpRoFU0NAWgWR0CS445zYEntdX2UKGgGaAloD0MIGhcOhCQcckCUhpRSlGgVTSEBaBZHQJLjr9pAUtZ1fZQoaAZoCWgPQwiqKck6nNNxQJSGlFKUaBVL/GgWR0CS5RYQJ5VwdX2UKGgGaAloD0MIzlSIR6LccUCUhpRSlGgVS/doFkdAkuXIcR15jnV9lChoBmgJaA9DCBheSfLca2JAlIaUUpRoFU3oA2gWR0CS5ukHUtqYdX2UKGgGaAloD0MIu9QI/QwickCUhpRSlGgVTTgBaBZHQJLnSaJAMUh1fZQoaAZoCWgPQwiIuDmVTElwQJSGlFKUaBVL82gWR0CS51wdbPhRdX2UKGgGaAloD0MIaeGyCpsOckCUhpRSlGgVTREBaBZHQJLnZFSbYsd1fZQoaAZoCWgPQwj9ag4QTL1tQJSGlFKUaBVL9GgWR0CS54LkjopydX2UKGgGaAloD0MIXAGFevrDbUCUhpRSlGgVTTMBaBZHQJLn+5sj3VV1fZQoaAZoCWgPQwiA12fO+upvQJSGlFKUaBVNFAFoFkdAkvKv3i704HV9lChoBmgJaA9DCNcTXRf+qnBAlIaUUpRoFUvwaBZHQJLy4bXHzYp1fZQoaAZoCWgPQwjiyW5m9FlIQJSGlFKUaBVL1GgWR0CS88OOsDGMdX2UKGgGaAloD0MIGsHG9W9sb0CUhpRSlGgVTRkBaBZHQJL0ep4rz5J1fZQoaAZoCWgPQwgOoyB4PKNxQJSGlFKUaBVNCgFoFkdAkvSjo2XLNnV9lChoBmgJaA9DCOFFX0EaVHNAlIaUUpRoFUv5aBZHQJL1JJI1+Ap1fZQoaAZoCWgPQwjzHfzEgQ9wQJSGlFKUaBVNKAFoFkdAkvVLKifxt3V9lChoBmgJaA9DCGtiga9oFXFAlIaUUpRoFU0+AWgWR0CS9WI7Njb0dX2UKGgGaAloD0MIlpS7z7ERcUCUhpRSlGgVTRcBaBZHQJL2/C3w1BN1fZQoaAZoCWgPQwhtUzwuantzQJSGlFKUaBVNHgFoFkdAkvdF8LKFI3V9lChoBmgJaA9DCAEwnkGDZXJAlIaUUpRoFU0PAWgWR0CS9/ntfG+9dX2UKGgGaAloD0MIdXedDTlic0CUhpRSlGgVS/doFkdAkvg/YraufXV9lChoBmgJaA9DCLw7MlYbinJAlIaUUpRoFU0KAWgWR0CS+Y12aDwpdX2UKGgGaAloD0MIfH+D9mrTcUCUhpRSlGgVTSUBaBZHQJL545IYm9h1fZQoaAZoCWgPQwjwbfqzX+NxQJSGlFKUaBVNHgFoFkdAkvoTp5eJHnV9lChoBmgJaA9DCELqdvZVBHFAlIaUUpRoFU1cAWgWR0CS+kuTRplCdX2UKGgGaAloD0MIdPBMaJIBcECUhpRSlGgVS/hoFkdAkvtnd43WF3V9lChoBmgJaA9DCGtI3GPp9W1AlIaUUpRoFU0vAWgWR0CS/AY3vQWvdX2UKGgGaAloD0MIhPHTuDezbkCUhpRSlGgVTSoBaBZHQJL9Wn+AEuB1fZQoaAZoCWgPQwiyg0pch69wQJSGlFKUaBVNQAFoFkdAkv1rq+rU9nV9lChoBmgJaA9DCC2xMhp5zHBAlIaUUpRoFU0cAWgWR0CS/ll1r6+GdX2UKGgGaAloD0MIKgMHtDRKckCUhpRSlGgVTRQBaBZHQJL+quQp4KR1fZQoaAZoCWgPQwgYlGk0+VBxQJSGlFKUaBVNHgFoFkdAkv6r7Gecx3V9lChoBmgJaA9DCF4UPfDxnHFAlIaUUpRoFU08AWgWR0CS/35sTFl1dX2UKGgGaAloD0MIfAxWnCpKcECUhpRSlGgVTQMBaBZHQJL/u5mRNh51fZQoaAZoCWgPQwiRLGACN6tyQJSGlFKUaBVL92gWR0CTABsyzolldX2UKGgGaAloD0MIoQ+WsWFycECUhpRSlGgVTQ4BaBZHQJMBpMQEpy91fZQoaAZoCWgPQwhQ/Bhzl2RxQJSGlFKUaBVNFQFoFkdAkwHVSsKb8XV9lChoBmgJaA9DCDzAkxaudm5AlIaUUpRoFUvhaBZHQJMB1id8Rcx1fZQoaAZoCWgPQwiNDHIX4VZxQJSGlFKUaBVNDwFoFkdAkwLikXUH6nV9lChoBmgJaA9DCGIP7WOFanBAlIaUUpRoFUv9aBZHQJMM28Fpwjt1fZQoaAZoCWgPQwjgoL36eK9yQJSGlFKUaBVNNgFoFkdAkwzpIczZYnV9lChoBmgJaA9DCLQ7pBggwXFAlIaUUpRoFU0BAWgWR0CTDSOgxrSFdX2UKGgGaAloD0MIVvMckS8ZckCUhpRSlGgVTREBaBZHQJMNsa72+PB1fZQoaAZoCWgPQwgiizTxTg1wQJSGlFKUaBVL22gWR0CTDpq9oN/fdX2UKGgGaAloD0MIxAsiUlO5b0CUhpRSlGgVS/toFkdAkw8ok3S8anV9lChoBmgJaA9DCBXJVwKpGG1AlIaUUpRoFU0SAWgWR0CTD1x2jfvXdX2UKGgGaAloD0MIbmjKTv8lckCUhpRSlGgVTQMBaBZHQJMQT6+FlCl1fZQoaAZoCWgPQwjqIoWy8PJyQJSGlFKUaBVL32gWR0CTEFrf+CK8dX2UKGgGaAloD0MI3nNgOQLQcECUhpRSlGgVTQABaBZHQJMQx9LHuJF1fZQoaAZoCWgPQwif46PFmc1wQJSGlFKUaBVNAgFoFkdAkxEt0eU6gnV9lChoBmgJaA9DCKWFyypsMXFAlIaUUpRoFUvTaBZHQJMR9TBInSh1fZQoaAZoCWgPQwgsK01KgTBwQJSGlFKUaBVNKgFoFkdAkxJuEqUeMnV9lChoBmgJaA9DCLqhKTu9t3BAlIaUUpRoFU0oAWgWR0CTFApVCHARdX2UKGgGaAloD0MIE/QXegSOcECUhpRSlGgVTQ8BaBZHQJMUuEBbOeJ1fZQoaAZoCWgPQwgH6/8c5l5yQJSGlFKUaBVNDQFoFkdAkxS8yeqaPXV9lChoBmgJaA9DCIwTX+1opnBAlIaUUpRoFU1nAWgWR0CTFPPEKmbcdX2UKGgGaAloD0MIVTNrKeB8ckCUhpRSlGgVTQ4BaBZHQJMVLf/FR511fZQoaAZoCWgPQwivl6YIcMlyQJSGlFKUaBVNCgFoFkdAkxVsBZIQOHV9lChoBmgJaA9DCLJnz2XqCnFAlIaUUpRoFU0AAWgWR0CTFgO09hZydX2UKGgGaAloD0MID5pd99a1bUCUhpRSlGgVS/toFkdAkxZVoL5RCXV9lChoBmgJaA9DCG1VEtlHwHJAlIaUUpRoFUv3aBZHQJMXtiiItUZ1fZQoaAZoCWgPQwhVF/AywytyQJSGlFKUaBVL32gWR0CTGCDifg76dX2UKGgGaAloD0MI7//jhAn4cUCUhpRSlGgVTQ4BaBZHQJMYqK+BYmt1fZQoaAZoCWgPQwikp8gh4ghvQJSGlFKUaBVL+2gWR0CTGOa/h2nsdX2UKGgGaAloD0MIUInrGFdJc0CUhpRSlGgVTR4BaBZHQJMY9ikO7QN1fZQoaAZoCWgPQwh7wac5ea9wQJSGlFKUaBVNDQFoFkdAkxlq3/givHV9lChoBmgJaA9DCCZWRiMfF3JAlIaUUpRoFU0GAWgWR0CTGepH7P6bdX2UKGgGaAloD0MIlDKpoU2tcECUhpRSlGgVTRYBaBZHQJMagyvcJt11fZQoaAZoCWgPQwjuzATDuQpOQJSGlFKUaBVL32gWR0CTJcEXcgyNdX2UKGgGaAloD0MIW11OCchcckCUhpRSlGgVTSwBaBZHQJMl27jDKo11fZQoaAZoCWgPQwi+amXCLx5yQJSGlFKUaBVNDAFoFkdAkybQLApKBnV9lChoBmgJaA9DCBWqm4s/R3JAlIaUUpRoFUvxaBZHQJMm6YNRWLh1ZS4="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 488,
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
|
|
86 |
"n_epochs": 4,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
},
|
91 |
"clip_range_vf": null,
|
92 |
"normalize_advantage": true,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:36137ea46543e2c89139a107413cf9be6eecbb9bbdebca56328b9ee9e64cc8ff
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:787000fd94c740dbf3fbf6e1c871336ba0004ca4361f8877bc14a966c7966b9e
|
3 |
+
size 43201
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -2,6 +2,6 @@ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PD
|
|
2 |
Python: 3.7.13
|
3 |
Stable-Baselines3: 1.5.0
|
4 |
PyTorch: 1.11.0+cu113
|
5 |
-
GPU Enabled:
|
6 |
Numpy: 1.21.6
|
7 |
Gym: 0.21.0
|
|
|
2 |
Python: 3.7.13
|
3 |
Stable-Baselines3: 1.5.0
|
4 |
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
Numpy: 1.21.6
|
7 |
Gym: 0.21.0
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a65c8569b0c454dbc512d278c150723b587c3fe0d07e79787d593f2dcfcbb604
|
3 |
+
size 218876
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 261.37102974000004, "std_reward": 37.954839307585374, "is_deterministic": true, "n_eval_episodes": 200, "eval_datetime": "2022-06-06T02:00:50.459558"}
|