{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc052df3ed0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651714475.479337, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEbpWj6FiOE8C+MYunNY27gJdnU+0nepNwAAgD8AAIA/+hwsvil5aT/WX088Z/KovpRwD77OhE88AAAAAAAAAABmKQU+pLB0Old5BLzdUt+5oRCLPGqgxboAAIA/AACAP8Mrcb4yW2g//WIJPe26m77tDmy+Lo8JPgAAAAAAAAAAzS2/PjdzEj+2Swi+YBc3vjNZQ74jvfu9AAAAAAAAAADN0ic9j25oupgI1DnCYZM0yRIjOhuM8rgAAIA/AACAP2bym7z2fD66T0W1umJGKrXoAeg4uGzROQAAgD8AAIA/teqNvoOiOD0Kb9o9FOIbvjFGBz3zXBw+AAAAAAAAAACz4Rg+igSJPx04XT5UurW+Uj+zPYu97bwAAAAAAAAAAPokY75BfM+8+IRvuYrmALiSrDw+H5mbOAAAgD8AAIA/muFzPRhltj3tGVk9PZrlvQV1ab2ulr05AAAAAAAAAADmTlo9OdvmPlGFir3UX0a+I/7EvI7lWr0AAAAAAAAAAGap7LzDSUm6fqA+uUksg7ajhtW6c0TtNQAAgD8AAIA/wH+LvY8+BbrTS7A7VMoDOMCeFDpYFbe2AACAPwAAgD8mi609FBeoP55FBD+FJa2+MyqGPXrRfD4AAAAAAAAAAADdlz3cW0K868sNvazei7zZTF+9No5zvAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJjW0Adj3W0CUhpRSlIwBbJRN6AOMAXSUR0COeU/9Hc1wdX2UKGgGaAloD0MIpREz+zyG+b+UhpRSlGgVTRkBaBZHQI6SQUi6g/V1fZQoaAZoCWgPQwhOtoE7UHtWQJSGlFKUaBVN6ANoFkdAjpXVIqbz9XV9lChoBmgJaA9DCPMcke9SyVpAlIaUUpRoFU3oA2gWR0COmMV1wHZ9dX2UKGgGaAloD0MIFCUhkbYGWUCUhpRSlGgVTegDaBZHQI6duzlcQiB1fZQoaAZoCWgPQwiH+l3YmqUhwJSGlFKUaBVL2mgWR0COom7xNIsidX2UKGgGaAloD0MIqP5BJEMqQkCUhpRSlGgVTegDaBZHQI6vTsrupjt1fZQoaAZoCWgPQwgMB0KygDZhQJSGlFKUaBVN6ANoFkdAjrh/CqIacnV9lChoBmgJaA9DCEBMwoU8el5AlIaUUpRoFU3oA2gWR0CO/QpnYg7pdX2UKGgGaAloD0MIKsql8QuOUECUhpRSlGgVTegDaBZHQI7+Bl18stl1fZQoaAZoCWgPQwgk0csoFuxhQJSGlFKUaBVN6ANoFkdAjwhwiJO32HV9lChoBmgJaA9DCNOFWP0RzmFAlIaUUpRoFU3oA2gWR0CPGF0XgtOEdX2UKGgGaAloD0MIar3faMfIUkCUhpRSlGgVTegDaBZHQI8ak2LpA2R1fZQoaAZoCWgPQwiHbCBdbLFRQJSGlFKUaBVN6ANoFkdAjxzL3TNMXnV9lChoBmgJaA9DCG8qUmFsKlJAlIaUUpRoFU3oA2gWR0CPJHVsk6cRdX2UKGgGaAloD0MIDJBoAkVKV0CUhpRSlGgVTegDaBZHQI8k83n6l+F1fZQoaAZoCWgPQwhypDMw8n9cQJSGlFKUaBVN6ANoFkdAj0FiEpRXOnV9lChoBmgJaA9DCMo329yY/kBAlIaUUpRoFUuoaBZHQI9iYlv60pp1fZQoaAZoCWgPQwg1fXbAdYZeQJSGlFKUaBVN6ANoFkdAj4KuZTho/XV9lChoBmgJaA9DCJQT7SqkvlRAlIaUUpRoFU3oA2gWR0CPhpLVWjoIdX2UKGgGaAloD0MI0911NuS1RECUhpRSlGgVTegDaBZHQI+Jtovi97F1fZQoaAZoCWgPQwidgvxs5N1fQJSGlFKUaBVN6ANoFkdAj46yUC7sfXV9lChoBmgJaA9DCNRlMbH5FWBAlIaUUpRoFU3oA2gWR0CPk0Z4wAU+dX2UKGgGaAloD0MISb2nctrfWECUhpRSlGgVTegDaBZHQI+gZg7YChh1fZQoaAZoCWgPQwiRfCWQEmpWQJSGlFKUaBVN6ANoFkdAj6kmnfl6q3V9lChoBmgJaA9DCNuF5joNu2JAlIaUUpRoFU3oA2gWR0CP7Oi0v4/NdX2UKGgGaAloD0MIAtNp3YYQYECUhpRSlGgVTegDaBZHQI/tz6k69011fZQoaAZoCWgPQwhOet/42s9DwJSGlFKUaBVL2mgWR0CP74G34Kx+dX2UKGgGaAloD0MIt0PDYtRKYECUhpRSlGgVTegDaBZHQI/3dw97ngZ1fZQoaAZoCWgPQwhfXRWoxaJhQJSGlFKUaBVN6ANoFkdAkAL5C4SYgXV9lChoBmgJaA9DCKJ9rOC3TFpAlIaUUpRoFU3oA2gWR0CQA/YyO7xvdX2UKGgGaAloD0MIowOSsG+ZXkCUhpRSlGgVTegDaBZHQJAE/cN6PbR1fZQoaAZoCWgPQwheoQ+WMexiQJSGlFKUaBVN6ANoFkdAkAiSbMHKOnV9lChoBmgJaA9DCNpxw++mbF5AlIaUUpRoFU3oA2gWR0CQCM3YL9dedX2UKGgGaAloD0MIc/bOaKuqIcCUhpRSlGgVTSIBaBZHQJALnZtelbh1fZQoaAZoCWgPQwiOyeL+I0M1QJSGlFKUaBVNIQFoFkdAkAzFC5VfeHV9lChoBmgJaA9DCDaRmQtciFpAlIaUUpRoFU3oA2gWR0CQJGwiJO32dX2UKGgGaAloD0MIIhlybD3mVUCUhpRSlGgVTegDaBZHQJAyusCDEm91fZQoaAZoCWgPQwiXxcTmY3BgQJSGlFKUaBVN6ANoFkdAkDRnz6JqI3V9lChoBmgJaA9DCAQ4vYv3lGFAlIaUUpRoFU3oA2gWR0CQNd2XLNfPdX2UKGgGaAloD0MIZysv+Z+2WUCUhpRSlGgVTegDaBZHQJA6lxcVxjt1fZQoaAZoCWgPQwjq7GRwlB1fQJSGlFKUaBVN6ANoFkdAkEDMVpKzzHV9lChoBmgJaA9DCKKYvAFmnmJAlIaUUpRoFU3oA2gWR0CQROVo6CDmdX2UKGgGaAloD0MIi21S0VjjWUCUhpRSlGgVTegDaBZHQJBIfqFAVwh1fZQoaAZoCWgPQwgUtMnhkztsQJSGlFKUaBVNrAFoFkdAkGiUhV2ic3V9lChoBmgJaA9DCDxQpzw6lmFAlIaUUpRoFU3oA2gWR0CQbJOE/SpjdX2UKGgGaAloD0MIZVQZxt0QU0CUhpRSlGgVTegDaBZHQJBzdfZ26kJ1fZQoaAZoCWgPQwjLR1LSw99kQJSGlFKUaBVN6ANoFkdAkHRlc6eXiXV9lChoBmgJaA9DCNBDbRvGk2BAlIaUUpRoFU3oA2gWR0CQdWWldkaudX2UKGgGaAloD0MIKe0NvjBcYECUhpRSlGgVTegDaBZHQJB45kGzKLd1fZQoaAZoCWgPQwjKFkm70URdQJSGlFKUaBVN6ANoFkdAkHkb/n4fwXV9lChoBmgJaA9DCDScMjffsWBAlIaUUpRoFU3oA2gWR0CQe8G+bmU4dX2UKGgGaAloD0MIzzEge72yXkCUhpRSlGgVTegDaBZHQJB8yy8jAzp1fZQoaAZoCWgPQwjl8bT8wFXtP5SGlFKUaBVNGAFoFkdAkId6tLcsUnV9lChoBmgJaA9DCEgbR6zFDz1AlIaUUpRoFUvcaBZHQJCNF+uvECN1fZQoaAZoCWgPQwiuDRXj/MhXQJSGlFKUaBVN6ANoFkdAkKA5LAYYSHV9lChoBmgJaA9DCJsEb0ijC2NAlIaUUpRoFU3oA2gWR0CQoeq5byH3dX2UKGgGaAloD0MIQPz89+DIW0CUhpRSlGgVTegDaBZHQJCjTb0voNd1fZQoaAZoCWgPQwgbSYJwBcxeQJSGlFKUaBVN6ANoFkdAkKfs8xKxs3V9lChoBmgJaA9DCI5XIHrS92NAlIaUUpRoFU3oA2gWR0CQrp+M6zVudX2UKGgGaAloD0MIsFjDRW53YUCUhpRSlGgVTegDaBZHQJCzbHtF8Xx1fZQoaAZoCWgPQwj9TShEwNthQJSGlFKUaBVN6ANoFkdAkLdNWU8mr3V9lChoBmgJaA9DCHbgnBGl21tAlIaUUpRoFU3oA2gWR0CQuCnTy8SPdX2UKGgGaAloD0MIeF+VC5VhR0CUhpRSlGgVTQMBaBZHQJC5O1E3Kjl1fZQoaAZoCWgPQwjpYWh1cnheQJSGlFKUaBVN6ANoFkdAkNse14Pf9HV9lChoBmgJaA9DCMyZ7Qp9T1ZAlIaUUpRoFU3oA2gWR0CQ4it16mfodX2UKGgGaAloD0MIZY7lXfWqXECUhpRSlGgVTegDaBZHQJDkMtjCpFV1fZQoaAZoCWgPQwhpxw2/m1hfQJSGlFKUaBVN6ANoFkdAkOgIWpIcznV9lChoBmgJaA9DCC16pwJuuWFAlIaUUpRoFU3oA2gWR0CQ6Evw3HaOdX2UKGgGaAloD0MIV+2akFbIYUCUhpRSlGgVTegDaBZHQJDrXQ0GeMB1fZQoaAZoCWgPQwjt2AjE6wBAwJSGlFKUaBVLwGgWR0CQ8s+evpyIdX2UKGgGaAloD0MIJxHhX4SQZECUhpRSlGgVTegDaBZHQJD5JOXVsk91fZQoaAZoCWgPQwjakH9mkE9jQJSGlFKUaBVN6ANoFkdAkP9V+/gzg3V9lChoBmgJaA9DCMIxy54EsGJAlIaUUpRoFU3oA2gWR0CRFC0Dlo12dX2UKGgGaAloD0MIl43O+amFY0CUhpRSlGgVTegDaBZHQJEWF1RtP551fZQoaAZoCWgPQwgdccgG0l1gQJSGlFKUaBVN6ANoFkdAkR0IWLxZuHV9lChoBmgJaA9DCAeZZOQs5kRAlIaUUpRoFU0+AWgWR0CRHtMfA9FGdX2UKGgGaAloD0MIexNDcjKkY0CUhpRSlGgVTegDaBZHQJEkiqm0mdB1fZQoaAZoCWgPQwil942vPVpaQJSGlFKUaBVN6ANoFkdAkSmwWi1zAHV9lChoBmgJaA9DCNUI/Uy9MVpAlIaUUpRoFU3oA2gWR0CRLeqTKT0QdX2UKGgGaAloD0MI19zR/3LgV0CUhpRSlGgVTegDaBZHQJEu4i4axX51fZQoaAZoCWgPQwjQYFPnUdhhQJSGlFKUaBVN6ANoFkdAkTALdFfAsXV9lChoBmgJaA9DCIgrZ++MbF9AlIaUUpRoFU3oA2gWR0CRUaywwCbMdX2UKGgGaAloD0MISz/h7NZcYUCUhpRSlGgVTegDaBZHQJFYtbcGkep1fZQoaAZoCWgPQwjgMNEgBfZXQJSGlFKUaBVN6ANoFkdAkV7bFsHjZXV9lChoBmgJaA9DCGkbf6Ky2VlAlIaUUpRoFU3oA2gWR0CRXx163RXwdX2UKGgGaAloD0MIPPiJA2hUZECUhpRSlGgVTegDaBZHQJFiPi0fHPx1fZQoaAZoCWgPQwjTwfo/h4lfQJSGlFKUaBVN6ANoFkdAkWmidFvyb3V9lChoBmgJaA9DCPVHGAasA2FAlIaUUpRoFU3oA2gWR0CRb6aaCtihdX2UKGgGaAloD0MINpTai2gLMECUhpRSlGgVTVABaBZHQJF6KLdepn91fZQoaAZoCWgPQwg/HY8ZKIBjQJSGlFKUaBVN6ANoFkdAkYgZPAO8TXV9lChoBmgJaA9DCJlmutfJh2BAlIaUUpRoFU3oA2gWR0CRicVAiV0LdX2UKGgGaAloD0MIcsXFUTmJYECUhpRSlGgVTegDaBZHQJGPfRqoIfN1fZQoaAZoCWgPQwjgg9cu7cdhQJSGlFKUaBVN6ANoFkdAkZDuyzHCGnV9lChoBmgJaA9DCIXQQZfwT2FAlIaUUpRoFU3oA2gWR0CRlZdxQzk7dX2UKGgGaAloD0MIkKD4MeZfWkCUhpRSlGgVTegDaBZHQJGZ+VB2Ohl1fZQoaAZoCWgPQwiYF2AfnexfQJSGlFKUaBVN6ANoFkdAkZ20PH1e0HV9lChoBmgJaA9DCDhOCvOeeGFAlIaUUpRoFU3oA2gWR0CRnofjCHh1dX2UKGgGaAloD0MIDCO9qN2MWUCUhpRSlGgVTegDaBZHQJGfq1og3cZ1fZQoaAZoCWgPQwh32a873XNaQJSGlFKUaBVN6ANoFkdAkaKGIKtxMnVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}