mingdali commited on
Commit
ad11ac2
1 Parent(s): 31bdc66

Upload 11 files

Browse files
config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "",
3
+ "architectures": [
4
+ "QWenLMHeadModel"
5
+ ],
6
+ "attn_dropout_prob": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_qwen.QWenConfig",
9
+ "AutoModelForCausalLM": "modeling_qwen.QWenLMHeadModel"
10
+ },
11
+ "bf16": false,
12
+ "emb_dropout_prob": 0.0,
13
+ "fp16": true,
14
+ "fp32": false,
15
+ "hidden_size": 4096,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 22016,
18
+ "kv_channels": 128,
19
+ "layer_norm_epsilon": 1e-06,
20
+ "max_position_embeddings": 8192,
21
+ "model_type": "qwen",
22
+ "no_bias": true,
23
+ "num_attention_heads": 32,
24
+ "num_hidden_layers": 32,
25
+ "onnx_safe": null,
26
+ "rotary_emb_base": 10000,
27
+ "rotary_pct": 1.0,
28
+ "scale_attn_weights": true,
29
+ "seq_length": 2048,
30
+ "tie_word_embeddings": false,
31
+ "tokenizer_type": "QWenTokenizer",
32
+ "torch_dtype": "float16",
33
+ "transformers_version": "4.32.0",
34
+ "use_cache": false,
35
+ "use_dynamic_ntk": true,
36
+ "use_flash_attn": false,
37
+ "use_logn_attn": true,
38
+ "visual": {
39
+ "heads": 16,
40
+ "image_size": 448,
41
+ "image_start_id": 151857,
42
+ "layers": 48,
43
+ "mlp_ratio": 4.9231,
44
+ "output_dim": 4096,
45
+ "patch_size": 14,
46
+ "width": 1664
47
+ },
48
+ "vocab_size": 151936
49
+ }
configuration_qwen.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ from transformers import PretrainedConfig
7
+
8
+
9
+ class QWenConfig(PretrainedConfig):
10
+ model_type = "ChatTruth"
11
+ keys_to_ignore_at_inference = ["past_key_values"]
12
+
13
+ def __init__(
14
+ self,
15
+ vocab_size=151936,
16
+ hidden_size=4096,
17
+ num_hidden_layers=32,
18
+ num_attention_heads=32,
19
+ emb_dropout_prob=0.0,
20
+ attn_dropout_prob=0.0,
21
+ layer_norm_epsilon=1e-6,
22
+ initializer_range=0.02,
23
+ max_position_embeddings=8192,
24
+ scale_attn_weights=True,
25
+ use_cache=True,
26
+ bf16=False,
27
+ fp16=False,
28
+ fp32=False,
29
+ kv_channels=128,
30
+ rotary_pct=1.0,
31
+ rotary_emb_base=10000,
32
+ use_dynamic_ntk=True,
33
+ use_logn_attn=True,
34
+ use_flash_attn="auto",
35
+ intermediate_size=22016,
36
+ no_bias=True,
37
+ tie_word_embeddings=False,
38
+ **kwargs,
39
+ ):
40
+ self.vocab_size = vocab_size
41
+ self.hidden_size = hidden_size
42
+ self.intermediate_size = intermediate_size
43
+ self.num_hidden_layers = num_hidden_layers
44
+ self.num_attention_heads = num_attention_heads
45
+ self.emb_dropout_prob = emb_dropout_prob
46
+ self.attn_dropout_prob = attn_dropout_prob
47
+ self.layer_norm_epsilon = layer_norm_epsilon
48
+ self.initializer_range = initializer_range
49
+ self.scale_attn_weights = scale_attn_weights
50
+ self.use_cache = use_cache
51
+ self.max_position_embeddings = max_position_embeddings
52
+ self.bf16 = bf16
53
+ self.fp16 = fp16
54
+ self.fp32 = fp32
55
+ self.kv_channels = kv_channels
56
+ self.rotary_pct = rotary_pct
57
+ self.rotary_emb_base = rotary_emb_base
58
+ self.use_dynamic_ntk = use_dynamic_ntk
59
+ self.use_logn_attn = use_logn_attn
60
+ self.use_flash_attn = use_flash_attn
61
+ self.no_bias = no_bias
62
+ super().__init__(
63
+ tie_word_embeddings=tie_word_embeddings,
64
+ **kwargs
65
+ )
generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chat_format": "chatml",
3
+ "do_sample": true,
4
+ "eos_token_id": 151643,
5
+ "max_new_tokens": 512,
6
+ "max_window_size": 6144,
7
+ "pad_token_id": 151643,
8
+ "top_k": 0,
9
+ "top_p": 0.3,
10
+ "transformers_version": "4.32.0"
11
+ }
modeling_qwen.py ADDED
@@ -0,0 +1,1162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ import importlib
7
+ import math
8
+ from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List, Any, Generator
9
+
10
+ import torch
11
+ import torch.nn.functional as F
12
+ import torch.utils.checkpoint
13
+ from torch.cuda.amp import autocast
14
+ import pdb
15
+ from torch.nn import CrossEntropyLoss
16
+ from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList
17
+ from transformers.generation.logits_process import LogitsProcessorList
18
+
19
+ if TYPE_CHECKING:
20
+ from transformers.generation.streamers import BaseStreamer
21
+ from transformers.generation.utils import GenerateOutput
22
+ from transformers.modeling_outputs import (
23
+ BaseModelOutputWithPast,
24
+ CausalLMOutputWithPast,
25
+ )
26
+ from transformers.modeling_utils import PreTrainedModel
27
+ from transformers.utils import logging
28
+
29
+ try:
30
+ from einops import rearrange
31
+ except ImportError:
32
+ rearrange = None
33
+ from torch import nn
34
+
35
+ SUPPORT_CUDA = torch.cuda.is_available()
36
+ SUPPORT_BF16 = SUPPORT_CUDA and torch.cuda.is_bf16_supported()
37
+ SUPPORT_FP16 = SUPPORT_CUDA and torch.cuda.get_device_capability(0)[0] >= 7
38
+
39
+ from .configuration_qwen import QWenConfig
40
+ from .qwen_generation_utils import (
41
+ HistoryType,
42
+ make_context,
43
+ decode_tokens,
44
+ get_stop_words_ids,
45
+ StopWordsLogitsProcessor,
46
+ )
47
+ from .visual import VisionTransformer
48
+
49
+
50
+ logger = logging.get_logger(__name__)
51
+
52
+ _CHECKPOINT_FOR_DOC = "qwen"
53
+ _CONFIG_FOR_DOC = "QWenConfig"
54
+
55
+ QWen_PRETRAINED_MODEL_ARCHIVE_LIST = ["qwen-7b"]
56
+
57
+ _ERROR_BAD_CHAT_FORMAT = """\
58
+ We detect you are probably using the pretrained model (rather than chat model) for chatting, since the chat_format in generation_config is not "chatml".
59
+ If you are directly using the model downloaded from Huggingface, please make sure you are using our "Qwen/Qwen-7B-Chat" Huggingface model (rather than "Qwen/Qwen-7B") when you call model.chat().
60
+ 我们检测到您可能在使用预训练模型(而非chat模型)进行多轮chat,因为您当前在generation_config指定的chat_format,并未设置为我们在对话中所支持的"chatml"格式。
61
+ 如果您在直接使用我们从Huggingface提供的模型,请确保您在调用model.chat()时,使用的是"Qwen/Qwen-7B-Chat"模型(而非"Qwen/Qwen-7B"预训练模型)。
62
+ """
63
+
64
+ _SENTINEL = object()
65
+ _ERROR_STREAM_IN_CHAT = """\
66
+ Pass argument `stream` to model.chat() is buggy, deprecated, and marked for removal. Please use model.chat_stream(...) instead of model.chat(..., stream=True).
67
+ 向model.chat()传入参数stream的用法可能存在Bug,该用法已被废弃,将在未来被移除。请使用model.chat_stream(...)代替model.chat(..., stream=True)。
68
+ """
69
+
70
+ apply_rotary_emb_func = None
71
+ rms_norm = None
72
+
73
+
74
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
75
+ def _make_causal_mask(
76
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
77
+ ):
78
+ """
79
+ Make causal mask used for bi-directional self-attention.
80
+ """
81
+ bsz, tgt_len = input_ids_shape
82
+ mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
83
+ mask_cond = torch.arange(mask.size(-1), device=device)
84
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
85
+ mask = mask.to(dtype)
86
+
87
+ if past_key_values_length > 0:
88
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
89
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
90
+
91
+
92
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
93
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
94
+ """
95
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
96
+ """
97
+ bsz, src_len = mask.size()
98
+ tgt_len = tgt_len if tgt_len is not None else src_len
99
+
100
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
101
+
102
+ inverted_mask = 1.0 - expanded_mask
103
+
104
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
105
+
106
+
107
+ class QWenAttention(nn.Module):
108
+ def __init__(self, config):
109
+ super().__init__()
110
+
111
+ self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
112
+ self.seq_length = config.seq_length
113
+
114
+ self.hidden_size = config.hidden_size
115
+ self.split_size = config.hidden_size
116
+ self.num_heads = config.num_attention_heads
117
+ self.head_dim = self.hidden_size // self.num_heads
118
+
119
+ self.scale_attn_weights = True
120
+
121
+ self.projection_size = config.kv_channels * config.num_attention_heads
122
+
123
+ assert self.projection_size % config.num_attention_heads == 0
124
+ self.hidden_size_per_attention_head = (
125
+ self.projection_size // config.num_attention_heads
126
+ )
127
+
128
+ self.c_attn = nn.Linear(config.hidden_size, 3 * self.projection_size)
129
+
130
+ self.c_proj = nn.Linear(
131
+ config.hidden_size, self.projection_size, bias=not config.no_bias
132
+ )
133
+
134
+ self.is_fp32 = not (config.bf16 or config.fp16)
135
+ self.bf16 = config.bf16
136
+
137
+ self.use_dynamic_ntk = config.use_dynamic_ntk
138
+ self.use_logn_attn = config.use_logn_attn
139
+
140
+ logn_list = [
141
+ math.log(i, self.seq_length) if i > self.seq_length else 1
142
+ for i in range(1, 32768)
143
+ ]
144
+ self.logn_tensor = torch.tensor(logn_list)[None, :, None, None]
145
+
146
+ self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
147
+
148
+ def _attn(self, query, key, value, registered_causal_mask, attention_mask=None, head_mask=None):
149
+ attn_weights = torch.matmul(query, key.transpose(-1, -2))
150
+
151
+ if self.scale_attn_weights:
152
+ attn_weights = attn_weights / torch.full(
153
+ [],
154
+ value.size(-1) ** 0.5,
155
+ dtype=attn_weights.dtype,
156
+ device=attn_weights.device,
157
+ )
158
+
159
+ query_length, key_length = query.size(-2), key.size(-2)
160
+ # causal_mask = self.bias[
161
+ # :, :, key_length - query_length : key_length, :key_length
162
+ # ]
163
+ # mask_value = torch.finfo(attn_weights.dtype).min
164
+ # mask_value = torch.full([], mask_value, dtype=attn_weights.dtype).to(
165
+ # attn_weights.device
166
+ # )
167
+ # attn_weights = torch.where(
168
+ # causal_mask, attn_weights.to(attn_weights.dtype), mask_value
169
+ # )
170
+ attn_weights = attn_weights + attention_mask
171
+
172
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
173
+
174
+ attn_weights = attn_weights.type(value.dtype)
175
+ attn_weights = self.attn_dropout(attn_weights)
176
+
177
+ if head_mask is not None:
178
+ attn_weights = attn_weights * head_mask
179
+
180
+ attn_output = torch.matmul(attn_weights, value)
181
+ attn_output = attn_output.transpose(1, 2)
182
+
183
+ return attn_output, attn_weights
184
+
185
+ def _upcast_and_reordered_attn(
186
+ self, query, key, value, registered_causal_mask, attention_mask=None, head_mask=None
187
+ ):
188
+ bsz, num_heads, q_seq_len, dk = query.size()
189
+ _, _, k_seq_len, _ = key.size()
190
+
191
+ attn_weights = torch.empty(
192
+ bsz * num_heads,
193
+ q_seq_len,
194
+ k_seq_len,
195
+ dtype=torch.float32,
196
+ device=query.device,
197
+ )
198
+
199
+ scale_factor = 1.0
200
+ if self.scale_attn_weights:
201
+ scale_factor /= float(value.size(-1)) ** 0.5
202
+
203
+ with autocast(enabled=False):
204
+ q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(
205
+ -1, dk, k_seq_len
206
+ )
207
+ attn_weights = torch.baddbmm(
208
+ attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor
209
+ )
210
+ attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
211
+
212
+ query_length, key_length = query.size(-2), key.size(-2)
213
+ causal_mask = registered_causal_mask[
214
+ :, :, key_length - query_length : key_length, :key_length
215
+ ]
216
+ mask_value = torch.finfo(attn_weights.dtype).min
217
+ mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(
218
+ attn_weights.device
219
+ )
220
+ attn_weights = torch.where(causal_mask, attn_weights, mask_value)
221
+
222
+ if attention_mask is not None:
223
+ attn_weights = attn_weights + attention_mask
224
+
225
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
226
+
227
+ if attn_weights.dtype != torch.float32:
228
+ raise RuntimeError(
229
+ "Error with upcasting, attn_weights does not have dtype torch.float32"
230
+ )
231
+ attn_weights = attn_weights.type(value.dtype)
232
+ attn_weights = self.attn_dropout(attn_weights)
233
+
234
+ if head_mask is not None:
235
+ attn_weights = attn_weights * head_mask
236
+
237
+ attn_output = torch.matmul(attn_weights, value)
238
+
239
+ return attn_output, attn_weights
240
+
241
+ def _split_heads(self, tensor, num_heads, attn_head_size):
242
+ new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
243
+ tensor = tensor.view(new_shape)
244
+ return tensor
245
+
246
+ def _merge_heads(self, tensor, num_heads, attn_head_size):
247
+ tensor = tensor.contiguous()
248
+ new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
249
+ return tensor.view(new_shape)
250
+
251
+ def forward(
252
+ self,
253
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
254
+ rotary_pos_emb: Optional[List[torch.Tensor]] = None,
255
+ registered_causal_mask: Optional[torch.Tensor] = None,
256
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
257
+ attention_mask: Optional[torch.FloatTensor] = None,
258
+ head_mask: Optional[torch.FloatTensor] = None,
259
+ encoder_hidden_states: Optional[torch.Tensor] = None,
260
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
261
+ output_attentions: Optional[bool] = False,
262
+ use_cache: Optional[bool] = False,
263
+ ):
264
+
265
+ mixed_x_layer = self.c_attn(hidden_states)
266
+
267
+ query, key, value = mixed_x_layer.split(self.split_size, dim=2)
268
+
269
+ query = self._split_heads(query, self.num_heads, self.head_dim)
270
+ key = self._split_heads(key, self.num_heads, self.head_dim)
271
+ value = self._split_heads(value, self.num_heads, self.head_dim)
272
+
273
+ if rotary_pos_emb is not None:
274
+ cur_len = query.shape[1]
275
+ rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
276
+ rotary_pos_emb = (rotary_pos_emb,) * 2
277
+ q_pos_emb, k_pos_emb = rotary_pos_emb
278
+ # Slice the pos emb for current inference
279
+ query = apply_rotary_pos_emb(query, q_pos_emb)
280
+ key = apply_rotary_pos_emb(key, k_pos_emb)
281
+
282
+ if layer_past is not None:
283
+ past_key, past_value = layer_past[0], layer_past[1]
284
+ key = torch.cat((past_key, key), dim=1)
285
+ value = torch.cat((past_value, value), dim=1)
286
+
287
+ if use_cache:
288
+ present = (key, value)
289
+ else:
290
+ present = None
291
+
292
+ if self.use_logn_attn and not self.training:
293
+ if self.logn_tensor.device != query.device or self.logn_tensor.dtype != query.dtype:
294
+ self.logn_tensor = self.logn_tensor.to(query.device).type_as(query)
295
+ seq_start = key.size(1) - query.size(1)
296
+ seq_end = key.size(1)
297
+ logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :]
298
+ query = query * logn_tensor.expand_as(query)
299
+
300
+ query = query.permute(0, 2, 1, 3)
301
+ key = key.permute(0, 2, 1, 3)
302
+ value = value.permute(0, 2, 1, 3)
303
+ attn_output, attn_weight = self._attn(
304
+ query, key, value, registered_causal_mask, attention_mask, head_mask
305
+ )
306
+ context_layer = self._merge_heads(
307
+ attn_output, self.num_heads, self.head_dim
308
+ )
309
+
310
+ attn_output = self.c_proj(context_layer)
311
+
312
+ outputs = (attn_output, present)
313
+ if output_attentions:
314
+ outputs += (attn_weight,)
315
+
316
+ return outputs
317
+
318
+
319
+ class QWenMLP(nn.Module):
320
+ def __init__(self, config):
321
+ super().__init__()
322
+ self.w1 = nn.Linear(
323
+ config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias
324
+ )
325
+ self.w2 = nn.Linear(
326
+ config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias
327
+ )
328
+ ff_dim_in = config.intermediate_size // 2
329
+ self.c_proj = nn.Linear(ff_dim_in, config.hidden_size, bias=not config.no_bias)
330
+
331
+ def forward(self, hidden_states):
332
+ a1 = self.w1(hidden_states)
333
+ a2 = self.w2(hidden_states)
334
+ intermediate_parallel = a1 * F.silu(a2)
335
+ output = self.c_proj(intermediate_parallel)
336
+ return output
337
+
338
+ class QWenBlock(nn.Module):
339
+ def __init__(self, config):
340
+ super().__init__()
341
+ hidden_size = config.hidden_size
342
+ self.bf16 = config.bf16
343
+
344
+ self.ln_1 = RMSNorm(
345
+ hidden_size,
346
+ eps=config.layer_norm_epsilon,
347
+ )
348
+ self.attn = QWenAttention(config)
349
+ self.ln_2 = RMSNorm(
350
+ hidden_size,
351
+ eps=config.layer_norm_epsilon,
352
+ )
353
+
354
+ self.mlp = QWenMLP(config)
355
+
356
+ def forward(
357
+ self,
358
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
359
+ rotary_pos_emb: Optional[List[torch.Tensor]] = None,
360
+ registered_causal_mask: Optional[torch.Tensor] = None,
361
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
362
+ attention_mask: Optional[torch.FloatTensor] = None,
363
+ head_mask: Optional[torch.FloatTensor] = None,
364
+ encoder_hidden_states: Optional[torch.Tensor] = None,
365
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
366
+ use_cache: Optional[bool] = False,
367
+ output_attentions: Optional[bool] = False,
368
+ ):
369
+ layernorm_output = self.ln_1(hidden_states)
370
+
371
+ attn_outputs = self.attn(
372
+ layernorm_output,
373
+ rotary_pos_emb,
374
+ registered_causal_mask=registered_causal_mask,
375
+ layer_past=layer_past,
376
+ attention_mask=attention_mask,
377
+ head_mask=head_mask,
378
+ use_cache=use_cache,
379
+ output_attentions=output_attentions,
380
+ )
381
+ attn_output = attn_outputs[0]
382
+
383
+ outputs = attn_outputs[1:]
384
+
385
+ residual = hidden_states
386
+ layernorm_input = attn_output + residual
387
+
388
+ layernorm_output = self.ln_2(layernorm_input)
389
+
390
+ residual = layernorm_input
391
+ mlp_output = self.mlp(layernorm_output)
392
+ hidden_states = residual + mlp_output
393
+
394
+ if use_cache:
395
+ outputs = (hidden_states,) + outputs
396
+ else:
397
+ outputs = (hidden_states,) + outputs[1:]
398
+
399
+ return outputs
400
+
401
+
402
+ class QWenPreTrainedModel(PreTrainedModel):
403
+ config_class = QWenConfig
404
+ base_model_prefix = "transformer"
405
+ is_parallelizable = False
406
+ supports_gradient_checkpointing = True
407
+ _no_split_modules = ["QWenBlock"]
408
+
409
+ def __init__(self, *inputs, **kwargs):
410
+ super().__init__(*inputs, **kwargs)
411
+
412
+ def _init_weights(self, module):
413
+ """Initialize the weights."""
414
+ if isinstance(module, nn.Linear):
415
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
416
+ if module.bias is not None:
417
+ module.bias.data.zero_()
418
+ elif isinstance(module, nn.Embedding):
419
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
420
+ if module.padding_idx is not None:
421
+ module.weight.data[module.padding_idx].zero_()
422
+ elif isinstance(module, RMSNorm):
423
+ module.weight.data.fill_(1.0)
424
+
425
+ for name, p in module.named_parameters():
426
+ if name == "c_proj.weight":
427
+ p.data.normal_(
428
+ mean=0.0,
429
+ std=(
430
+ self.config.initializer_range
431
+ / math.sqrt(2 * self.config.num_hidden_layers)
432
+ ),
433
+ )
434
+
435
+ def _set_gradient_checkpointing(self, module, value=False):
436
+ if isinstance(module, QWenModel):
437
+ module.gradient_checkpointing = value
438
+
439
+
440
+ class QWenModel(QWenPreTrainedModel):
441
+ _keys_to_ignore_on_load_missing = ["attn.masked_bias"]
442
+
443
+ def __init__(self, config):
444
+ super().__init__(config)
445
+ self.vocab_size = config.vocab_size
446
+ self.num_hidden_layers = config.num_hidden_layers
447
+ self.embed_dim = config.hidden_size
448
+
449
+ self.gradient_checkpointing = False
450
+ self.use_dynamic_ntk = config.use_dynamic_ntk
451
+ self.seq_length = config.seq_length
452
+
453
+ self.wte = nn.Embedding(self.vocab_size, self.embed_dim)
454
+
455
+ self.drop = nn.Dropout(config.emb_dropout_prob)
456
+
457
+ if config.rotary_pct == 1.0:
458
+ self.rotary_ndims = None
459
+ else:
460
+ assert config.rotary_pct < 1
461
+ self.rotary_ndims = int(
462
+ config.kv_channels * config.rotary_pct
463
+ )
464
+ dim = (
465
+ self.rotary_ndims
466
+ if self.rotary_ndims is not None
467
+ else config.kv_channels
468
+ )
469
+ self.rotary_emb = RotaryEmbedding(dim, base=config.rotary_emb_base)
470
+
471
+ self.use_flash_attn = config.use_flash_attn
472
+ self.is_fp32 = not (config.bf16 or config.fp16)
473
+ self.registered_causal_mask = None
474
+ # if (
475
+ # self.use_flash_attn
476
+ # and flash_attn_unpadded_func is not None
477
+ # and not self.is_fp32
478
+ # ):
479
+ # self.registered_causal_mask = None
480
+ # else:
481
+ # max_positions = config.max_position_embeddings
482
+ # self.register_buffer(
483
+ # "registered_causal_mask",
484
+ # torch.tril(
485
+ # torch.ones((max_positions, max_positions), dtype=torch.bool)
486
+ # ).view(1, 1, max_positions, max_positions),
487
+ # persistent=False,
488
+ # )
489
+
490
+ self.h = nn.ModuleList(
491
+ [
492
+ QWenBlock(
493
+ config
494
+ )
495
+ for i in range(config.num_hidden_layers)
496
+ ]
497
+ )
498
+ self.ln_f = RMSNorm(
499
+ self.embed_dim,
500
+ eps=config.layer_norm_epsilon,
501
+ )
502
+
503
+ self.visual = VisionTransformer(**config.visual)
504
+
505
+ self.post_init()
506
+
507
+ def get_input_embeddings(self):
508
+ return self.wte
509
+
510
+ def set_input_embeddings(self, new_embeddings):
511
+ self.wte = new_embeddings
512
+
513
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
514
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
515
+ # create causal mask
516
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
517
+ combined_attention_mask = None
518
+ if input_shape[-1] > 1:
519
+ combined_attention_mask = _make_causal_mask(
520
+ input_shape,
521
+ inputs_embeds.dtype,
522
+ device=inputs_embeds.device,
523
+ past_key_values_length=past_key_values_length,
524
+ )
525
+
526
+ if attention_mask is not None:
527
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
528
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
529
+ inputs_embeds.device
530
+ )
531
+ combined_attention_mask = (
532
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
533
+ )
534
+
535
+ return combined_attention_mask
536
+
537
+
538
+ def forward(
539
+ self,
540
+ input_ids: Optional[torch.LongTensor] = None,
541
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
542
+ attention_mask: Optional[torch.FloatTensor] = None,
543
+ token_type_ids: Optional[torch.LongTensor] = None,
544
+ position_ids: Optional[torch.LongTensor] = None,
545
+ head_mask: Optional[torch.FloatTensor] = None,
546
+ inputs_embeds: Optional[torch.FloatTensor] = None,
547
+ encoder_hidden_states: Optional[torch.Tensor] = None,
548
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
549
+ use_cache: Optional[bool] = None,
550
+ output_attentions: Optional[bool] = None,
551
+ output_hidden_states: Optional[bool] = None,
552
+ return_dict: Optional[bool] = None,
553
+ ):
554
+ if past_key_values is None and torch.any(input_ids == self.config.visual['image_start_id']):
555
+ bos_pos = torch.where(input_ids == self.config.visual['image_start_id'])
556
+ eos_pos = torch.where(input_ids == self.config.visual['image_start_id'] + 1)
557
+ assert (bos_pos[0] == eos_pos[0]).all()
558
+ img_pos = torch.stack((bos_pos[0], bos_pos[1], eos_pos[1]), dim=1)
559
+ images = []
560
+ for i, a, b in img_pos:
561
+ image = input_ids[i][a + 1 : b - 1].tolist()
562
+ image = image[ : image.index(self.config.visual['image_start_id'] + 2)]
563
+ images.append(bytes(image).decode('utf-8'))
564
+
565
+ images = self.visual.encode(images)
566
+ assert images.shape[0] == len(images)
567
+ fake_images = None
568
+ elif self.training:
569
+ fake_images=torch.zeros(1,3,224,224).to(
570
+ dtype=self.visual.conv1.weight.dtype, device=self.visual.conv1.weight.device)
571
+ images = self.visual(fake_images)
572
+ else:
573
+ fake_images = None
574
+ images = None
575
+
576
+ output_attentions = (
577
+ output_attentions
578
+ if output_attentions is not None
579
+ else self.config.output_attentions
580
+ )
581
+ output_hidden_states = (
582
+ output_hidden_states
583
+ if output_hidden_states is not None
584
+ else self.config.output_hidden_states
585
+ )
586
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
587
+ return_dict = (
588
+ return_dict if return_dict is not None else self.config.use_return_dict
589
+ )
590
+
591
+ if input_ids is not None and inputs_embeds is not None:
592
+ raise ValueError(
593
+ "You cannot specify both input_ids and inputs_embeds at the same time"
594
+ )
595
+ elif input_ids is not None:
596
+ input_shape = input_ids.size()
597
+ input_ids = input_ids.view(-1, input_shape[-1])
598
+ batch_size = input_ids.shape[0]
599
+ elif inputs_embeds is not None:
600
+ input_shape = inputs_embeds.size()[:-1]
601
+ batch_size = inputs_embeds.shape[0]
602
+ else:
603
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
604
+
605
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
606
+
607
+ if token_type_ids is not None:
608
+ token_type_ids = token_type_ids.view(-1, input_shape[-1])
609
+ if position_ids is not None:
610
+ position_ids = position_ids.view(-1, input_shape[-1])
611
+
612
+ if past_key_values is None:
613
+ past_length = 0
614
+ past_key_values = tuple([None] * len(self.h))
615
+ else:
616
+ past_length = past_key_values[0][0].size(-2)
617
+
618
+ if position_ids is None:
619
+ position_ids = torch.arange(
620
+ past_length,
621
+ input_shape[-1] + past_length,
622
+ dtype=torch.long,
623
+ device=device,
624
+ )
625
+ position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
626
+
627
+ encoder_attention_mask = None
628
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
629
+
630
+ if inputs_embeds is None:
631
+ inputs_embeds = self.wte(input_ids)
632
+
633
+ if batch_size <= 0:
634
+ raise ValueError("batch_size has to be defined and > 0")
635
+ attention_mask = self._prepare_decoder_attention_mask(
636
+ attention_mask, input_shape, inputs_embeds, past_length
637
+ )
638
+
639
+ hidden_states = inputs_embeds
640
+
641
+ kv_seq_len = hidden_states.size()[1]
642
+ if past_key_values[0] is not None:
643
+ # past key values[0][0] shape: bs * seq_len * head_num * dim
644
+ kv_seq_len += past_key_values[0][0].shape[1]
645
+ if (
646
+ self.use_dynamic_ntk
647
+ and kv_seq_len == hidden_states.size()[1]
648
+ and not self.training
649
+ ):
650
+ context_value = math.log(kv_seq_len / self.seq_length, 2) + 1
651
+ ntk_alpha = 2 ** math.ceil(context_value) - 1
652
+ ntk_alpha = max(ntk_alpha, 1)
653
+ else:
654
+ ntk_alpha = self.rotary_emb._ntk_alpha_cached
655
+
656
+ rotary_pos_emb = self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha)
657
+ for idx in range(len(rotary_pos_emb)):
658
+ rotary_pos_emb[idx] = rotary_pos_emb[idx].to(hidden_states.device)
659
+
660
+ hidden_states = self.drop(hidden_states).clone()
661
+ if fake_images is not None:
662
+ hidden_states = hidden_states + images.mean()*0
663
+ elif images is not None:
664
+ for idx, (i, a, b) in enumerate(img_pos):
665
+ hidden_states[i][a + 1 : b] = images[idx]
666
+ output_shape = input_shape + (hidden_states.size(-1),)
667
+
668
+ if self.gradient_checkpointing and self.training:
669
+ if use_cache:
670
+ logger.warning_once(
671
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
672
+ )
673
+ use_cache = False
674
+
675
+ presents = () if use_cache else None
676
+ all_self_attentions = () if output_attentions else None
677
+ all_hidden_states = () if output_hidden_states else None
678
+ for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
679
+
680
+ if output_hidden_states:
681
+ all_hidden_states = all_hidden_states + (hidden_states,)
682
+
683
+ if self.gradient_checkpointing and self.training:
684
+
685
+ def create_custom_forward(module):
686
+ def custom_forward(*inputs):
687
+ # None for past_key_value
688
+ return module(*inputs, use_cache, output_attentions)
689
+
690
+ return custom_forward
691
+
692
+ outputs = torch.utils.checkpoint.checkpoint(
693
+ create_custom_forward(block),
694
+ hidden_states,
695
+ rotary_pos_emb,
696
+ self.registered_causal_mask,
697
+ None,
698
+ attention_mask,
699
+ head_mask[i],
700
+ encoder_hidden_states,
701
+ encoder_attention_mask,
702
+ )
703
+ else:
704
+ outputs = block(
705
+ hidden_states,
706
+ layer_past=layer_past,
707
+ rotary_pos_emb=rotary_pos_emb,
708
+ registered_causal_mask=self.registered_causal_mask,
709
+ attention_mask=attention_mask,
710
+ head_mask=head_mask[i],
711
+ encoder_hidden_states=encoder_hidden_states,
712
+ encoder_attention_mask=encoder_attention_mask,
713
+ use_cache=use_cache,
714
+ output_attentions=output_attentions,
715
+ )
716
+
717
+ hidden_states = outputs[0]
718
+ if use_cache is True:
719
+ presents = presents + (outputs[1],)
720
+
721
+ if output_attentions:
722
+ all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
723
+
724
+ hidden_states = self.ln_f(hidden_states)
725
+ hidden_states = hidden_states.view(output_shape)
726
+ # Add last hidden state
727
+ if output_hidden_states:
728
+ all_hidden_states = all_hidden_states + (hidden_states,)
729
+
730
+ if not return_dict:
731
+ return tuple(
732
+ v for v in [hidden_states, presents, all_hidden_states] if v is not None
733
+ )
734
+
735
+ return BaseModelOutputWithPast(
736
+ last_hidden_state=hidden_states,
737
+ past_key_values=presents,
738
+ hidden_states=all_hidden_states,
739
+ attentions=all_self_attentions,
740
+ )
741
+
742
+
743
+ class QWenLMHeadModel(QWenPreTrainedModel):
744
+ _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.rotary_emb\.inv_freq"]
745
+ _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.masked_bias"]
746
+
747
+ def __init__(self, config):
748
+ super().__init__(config)
749
+ assert (
750
+ config.bf16 + config.fp16 + config.fp32 <= 1
751
+ ), "Only one of \"bf16\", \"fp16\", \"fp32\" can be true"
752
+
753
+ autoset_precision = config.bf16 + config.fp16 + config.fp32 == 0
754
+
755
+ if autoset_precision:
756
+ if SUPPORT_BF16:
757
+ logger.warn(
758
+ "The model is automatically converting to bf16 for faster inference. "
759
+ "If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"."
760
+ )
761
+ config.bf16 = True
762
+ elif SUPPORT_FP16:
763
+ logger.warn(
764
+ "The model is automatically converting to fp16 for faster inference. "
765
+ "If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"."
766
+ )
767
+ config.fp16 = True
768
+ else:
769
+ config.fp32 = True
770
+
771
+ if config.bf16 and SUPPORT_CUDA and not SUPPORT_BF16:
772
+ logger.warn("Your device does NOT seem to support bf16, you can switch to fp16 or fp32 by by passing fp16/fp32=True in \"AutoModelForCausalLM.from_pretrained\".")
773
+ if config.fp16 and SUPPORT_CUDA and not SUPPORT_FP16:
774
+ logger.warn("Your device does NOT support faster inference with fp16, please switch to fp32 which is likely to be faster")
775
+ if config.fp32:
776
+ if SUPPORT_BF16:
777
+ logger.warn("Your device support faster inference by passing bf16=True in \"AutoModelForCausalLM.from_pretrained\".")
778
+ elif SUPPORT_FP16:
779
+ logger.warn("Your device support faster inference by passing fp16=True in \"AutoModelForCausalLM.from_pretrained\".")
780
+
781
+ self.transformer = QWenModel(config)
782
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
783
+
784
+ if config.bf16:
785
+ self.transformer.bfloat16()
786
+ self.lm_head.bfloat16()
787
+ if config.fp16:
788
+ self.transformer.half()
789
+ self.lm_head.half()
790
+ self.post_init()
791
+
792
+ def get_output_embeddings(self):
793
+ return self.lm_head
794
+
795
+ def set_output_embeddings(self, new_embeddings):
796
+ self.lm_head = new_embeddings
797
+
798
+ def prepare_inputs_for_generation(
799
+ self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
800
+ ):
801
+ token_type_ids = kwargs.get("token_type_ids", None)
802
+ if past_key_values:
803
+ input_ids = input_ids[:, -1].unsqueeze(-1)
804
+ if token_type_ids is not None:
805
+ token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
806
+
807
+ attention_mask = kwargs.get("attention_mask", None)
808
+ position_ids = kwargs.get("position_ids", None)
809
+
810
+ if attention_mask is not None and position_ids is None:
811
+ position_ids = attention_mask.long().cumsum(-1) - 1
812
+ position_ids.masked_fill_(attention_mask == 0, 1)
813
+ if past_key_values:
814
+ position_ids = position_ids[:, -1].unsqueeze(-1)
815
+ else:
816
+ position_ids = None
817
+
818
+ if inputs_embeds is not None and past_key_values is None:
819
+ model_inputs = {"inputs_embeds": inputs_embeds}
820
+ else:
821
+ model_inputs = {"input_ids": input_ids}
822
+
823
+ model_inputs.update(
824
+ {
825
+ "past_key_values": past_key_values,
826
+ "use_cache": kwargs.get("use_cache"),
827
+ "position_ids": position_ids,
828
+ "attention_mask": attention_mask,
829
+ "token_type_ids": token_type_ids,
830
+ }
831
+ )
832
+ return model_inputs
833
+
834
+ def forward(
835
+ self,
836
+ input_ids: Optional[torch.LongTensor] = None,
837
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
838
+ attention_mask: Optional[torch.FloatTensor] = None,
839
+ token_type_ids: Optional[torch.LongTensor] = None,
840
+ position_ids: Optional[torch.LongTensor] = None,
841
+ head_mask: Optional[torch.FloatTensor] = None,
842
+ inputs_embeds: Optional[torch.FloatTensor] = None,
843
+ encoder_hidden_states: Optional[torch.Tensor] = None,
844
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
845
+ labels: Optional[torch.LongTensor] = None,
846
+ use_cache: Optional[bool] = None,
847
+ output_attentions: Optional[bool] = None,
848
+ output_hidden_states: Optional[bool] = None,
849
+ return_dict: Optional[bool] = None,
850
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
851
+
852
+ return_dict = (
853
+ return_dict if return_dict is not None else self.config.use_return_dict
854
+ )
855
+
856
+ transformer_outputs = self.transformer(
857
+ input_ids,
858
+ past_key_values=past_key_values,
859
+ attention_mask=attention_mask,
860
+ token_type_ids=token_type_ids,
861
+ position_ids=position_ids,
862
+ head_mask=head_mask,
863
+ inputs_embeds=inputs_embeds,
864
+ encoder_hidden_states=encoder_hidden_states,
865
+ encoder_attention_mask=encoder_attention_mask,
866
+ use_cache=use_cache,
867
+ output_attentions=output_attentions,
868
+ output_hidden_states=output_hidden_states,
869
+ return_dict=return_dict,
870
+ )
871
+ hidden_states = transformer_outputs[0]
872
+
873
+ lm_logits = self.lm_head(hidden_states)
874
+
875
+ loss = None
876
+ if labels is not None:
877
+ labels = labels.to(lm_logits.device)
878
+ shift_logits = lm_logits[..., :-1, :].contiguous()
879
+ shift_labels = labels[..., 1:].contiguous()
880
+ loss_fct = CrossEntropyLoss()
881
+ loss = loss_fct(
882
+ shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
883
+ )
884
+
885
+ if not return_dict:
886
+ output = (lm_logits,) + transformer_outputs[1:]
887
+ return ((loss,) + output) if loss is not None else output
888
+
889
+ return CausalLMOutputWithPast(
890
+ loss=loss,
891
+ logits=lm_logits,
892
+ past_key_values=transformer_outputs.past_key_values,
893
+ hidden_states=transformer_outputs.hidden_states,
894
+ attentions=transformer_outputs.attentions,
895
+ )
896
+
897
+ @staticmethod
898
+ def _reorder_cache(
899
+ past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
900
+ ) -> Tuple[Tuple[torch.Tensor]]:
901
+
902
+ return tuple(
903
+ tuple(
904
+ past_state.index_select(0, beam_idx.to(past_state.device))
905
+ for past_state in layer_past
906
+ )
907
+ for layer_past in past_key_values
908
+ )
909
+
910
+ def chat(
911
+ self,
912
+ tokenizer: PreTrainedTokenizer,
913
+ query: str,
914
+ history: Optional[HistoryType],
915
+ system: str = "You are a helpful assistant.",
916
+ append_history: bool = True,
917
+ stream: Optional[bool] = _SENTINEL,
918
+ stop_words_ids: Optional[List[List[int]]] = None,
919
+ generation_config: Optional[GenerationConfig] = None,
920
+ **kwargs,
921
+ ) -> Tuple[str, HistoryType]:
922
+ generation_config = generation_config if generation_config is not None else self.generation_config
923
+
924
+ assert stream is _SENTINEL, _ERROR_STREAM_IN_CHAT
925
+ assert generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
926
+ if history is None:
927
+ history = []
928
+ if stop_words_ids is None:
929
+ stop_words_ids = []
930
+ # pdb.set_trace()
931
+ max_window_size = kwargs.get('max_window_size', None)
932
+ if max_window_size is None:
933
+ max_window_size = generation_config.max_window_size
934
+ raw_text, context_tokens = make_context(
935
+ tokenizer,
936
+ query,
937
+ history=history,
938
+ system=system,
939
+ max_window_size=max_window_size,
940
+ chat_format=generation_config.chat_format,
941
+ )
942
+
943
+ stop_words_ids.extend(get_stop_words_ids(
944
+ generation_config.chat_format, tokenizer
945
+ ))
946
+ input_ids = torch.tensor([context_tokens]).to(self.device)
947
+ outputs = self.generate(
948
+ input_ids,
949
+ stop_words_ids=stop_words_ids,
950
+ return_dict_in_generate=False,
951
+ generation_config=generation_config,
952
+ **kwargs,
953
+ )
954
+
955
+ response = decode_tokens(
956
+ outputs[0],
957
+ tokenizer,
958
+ raw_text_len=len(raw_text),
959
+ context_length=len(context_tokens),
960
+ chat_format=generation_config.chat_format,
961
+ verbose=False,
962
+ errors='replace'
963
+ )
964
+
965
+ if append_history:
966
+ history.append((query, response))
967
+
968
+ return response, history
969
+
970
+ def chat_stream(
971
+ self,
972
+ tokenizer: PreTrainedTokenizer,
973
+ query: str,
974
+ history: Optional[HistoryType],
975
+ system: str = "You are a helpful assistant.",
976
+ stop_words_ids: Optional[List[List[int]]] = None,
977
+ logits_processor: Optional[LogitsProcessorList] = None,
978
+ generation_config: Optional[GenerationConfig] = None,
979
+ **kwargs,
980
+ ) -> Generator[str, Any, None]:
981
+ generation_config = generation_config if generation_config is not None else self.generation_config
982
+ assert generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
983
+ if history is None:
984
+ history = []
985
+ if stop_words_ids is None:
986
+ stop_words_ids = []
987
+
988
+ max_window_size = kwargs.get('max_window_size', None)
989
+ if max_window_size is None:
990
+ max_window_size = generation_config.max_window_size
991
+ raw_text, context_tokens = make_context(
992
+ tokenizer,
993
+ query,
994
+ history=history,
995
+ system=system,
996
+ max_window_size=max_window_size,
997
+ chat_format=generation_config.chat_format,
998
+ )
999
+
1000
+ stop_words_ids.extend(get_stop_words_ids(
1001
+ generation_config.chat_format, tokenizer
1002
+ ))
1003
+ if stop_words_ids is not None:
1004
+ stop_words_logits_processor = StopWordsLogitsProcessor(
1005
+ stop_words_ids=stop_words_ids,
1006
+ eos_token_id=generation_config.eos_token_id,
1007
+ )
1008
+ if logits_processor is None:
1009
+ logits_processor = LogitsProcessorList([stop_words_logits_processor])
1010
+ else:
1011
+ logits_processor.append(stop_words_logits_processor)
1012
+ input_ids = torch.tensor([context_tokens]).to(self.device)
1013
+
1014
+ from transformers_stream_generator.main import NewGenerationMixin, StreamGenerationConfig
1015
+ self.__class__.generate_stream = NewGenerationMixin.generate
1016
+ self.__class__.sample_stream = NewGenerationMixin.sample_stream
1017
+ stream_config = StreamGenerationConfig(**generation_config.to_dict(), do_stream=True)
1018
+
1019
+ def stream_generator():
1020
+ outputs = []
1021
+ for token in self.generate_stream(
1022
+ input_ids,
1023
+ return_dict_in_generate=False,
1024
+ generation_config=stream_config,
1025
+ logits_processor=logits_processor,
1026
+ seed=-1,
1027
+ **kwargs):
1028
+ outputs.append(token.item())
1029
+ yield tokenizer.decode(outputs, skip_special_tokens=True, errors='ignore')
1030
+
1031
+ return stream_generator()
1032
+
1033
+ def generate(
1034
+ self,
1035
+ inputs: Optional[torch.Tensor] = None,
1036
+ generation_config: Optional[GenerationConfig] = None,
1037
+ logits_processor: Optional[LogitsProcessorList] = None,
1038
+ stopping_criteria: Optional[StoppingCriteriaList] = None,
1039
+ prefix_allowed_tokens_fn: Optional[
1040
+ Callable[[int, torch.Tensor], List[int]]
1041
+ ] = None,
1042
+ synced_gpus: Optional[bool] = None,
1043
+ assistant_model: Optional["PreTrainedModel"] = None,
1044
+ streamer: Optional["BaseStreamer"] = None,
1045
+ **kwargs,
1046
+ ) -> Union[GenerateOutput, torch.LongTensor]:
1047
+ generation_config = generation_config if generation_config is not None else self.generation_config
1048
+
1049
+ # Process stop_words_ids.
1050
+ stop_words_ids = kwargs.pop("stop_words_ids", None)
1051
+ if stop_words_ids is None and generation_config is not None:
1052
+ stop_words_ids = getattr(generation_config, "stop_words_ids", None)
1053
+ if stop_words_ids is None:
1054
+ stop_words_ids = getattr(generation_config, "stop_words_ids", None)
1055
+
1056
+ if stop_words_ids is not None:
1057
+ stop_words_logits_processor = StopWordsLogitsProcessor(
1058
+ stop_words_ids=stop_words_ids,
1059
+ eos_token_id=generation_config.eos_token_id,
1060
+ )
1061
+ if logits_processor is None:
1062
+ logits_processor = LogitsProcessorList([stop_words_logits_processor])
1063
+ else:
1064
+ logits_processor.append(stop_words_logits_processor)
1065
+
1066
+ return super().generate(
1067
+ inputs,
1068
+ generation_config=generation_config,
1069
+ logits_processor=logits_processor,
1070
+ stopping_criteria=stopping_criteria,
1071
+ prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
1072
+ synced_gpus=synced_gpus,
1073
+ assistant_model=assistant_model,
1074
+ streamer=streamer,
1075
+ **kwargs,
1076
+ )
1077
+
1078
+
1079
+ class RotaryEmbedding(torch.nn.Module):
1080
+ def __init__(self, dim, base=10000):
1081
+ super().__init__()
1082
+ self.dim = dim
1083
+ self.base = base
1084
+ self.inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
1085
+ if importlib.util.find_spec("einops") is None:
1086
+ raise RuntimeError("einops is required for Rotary Embedding")
1087
+
1088
+ self._rotary_pos_emb_cache = None
1089
+ self._seq_len_cached = 0
1090
+ self._ntk_alpha_cached = 1.0
1091
+
1092
+ def update_rotary_pos_emb_cache(self, max_seq_len, offset=0, ntk_alpha=1.0):
1093
+ seqlen = max_seq_len + offset
1094
+ if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached:
1095
+ base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
1096
+ self.inv_freq = 1.0 / (
1097
+ base
1098
+ ** (
1099
+ torch.arange(0, self.dim, 2, device=self.inv_freq.device).float()
1100
+ / self.dim
1101
+ )
1102
+ )
1103
+ self._seq_len_cached = max(2 * seqlen, 16)
1104
+ self._ntk_alpha_cached = ntk_alpha
1105
+ seq = torch.arange(self._seq_len_cached, device=self.inv_freq.device)
1106
+ freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
1107
+
1108
+ emb = torch.cat((freqs, freqs), dim=-1)
1109
+ from einops import rearrange
1110
+
1111
+ emb = rearrange(emb, "n d -> 1 n 1 d")
1112
+
1113
+ cos, sin = emb.cos(), emb.sin()
1114
+ self._rotary_pos_emb_cache = [cos, sin]
1115
+
1116
+ def forward(self, max_seq_len, offset=0, ntk_alpha=1.0):
1117
+ self.update_rotary_pos_emb_cache(max_seq_len, offset, ntk_alpha)
1118
+ cos, sin = self._rotary_pos_emb_cache
1119
+ return [cos[:, offset : offset + max_seq_len], sin[:, offset : offset + max_seq_len]]
1120
+
1121
+
1122
+ def _rotate_half(x):
1123
+ from einops import rearrange
1124
+
1125
+ x = rearrange(x, "... (j d) -> ... j d", j=2)
1126
+ x1, x2 = x.unbind(dim=-2)
1127
+ return torch.cat((-x2, x1), dim=-1)
1128
+
1129
+
1130
+ def apply_rotary_pos_emb(t, freqs):
1131
+ cos, sin = freqs
1132
+ if apply_rotary_emb_func is not None and t.is_cuda:
1133
+ t_ = t.float()
1134
+ cos = cos.squeeze(0).squeeze(1)[:, : cos.shape[-1] // 2]
1135
+ sin = sin.squeeze(0).squeeze(1)[:, : sin.shape[-1] // 2]
1136
+ output = apply_rotary_emb_func(t_, cos, sin).type_as(t)
1137
+ return output
1138
+ else:
1139
+ rot_dim = freqs[0].shape[-1]
1140
+ cos, sin = freqs
1141
+ t_, t_pass_ = t[..., :rot_dim], t[..., rot_dim:]
1142
+ t_ = t_.float()
1143
+ t_pass_ = t_pass_.float()
1144
+ t_ = (t_ * cos) + (_rotate_half(t_) * sin)
1145
+ return torch.cat((t_, t_pass_), dim=-1).type_as(t)
1146
+
1147
+
1148
+ class RMSNorm(torch.nn.Module):
1149
+ def __init__(self, dim: int, eps: float = 1e-6):
1150
+ super().__init__()
1151
+ self.eps = eps
1152
+ self.weight = nn.Parameter(torch.ones(dim))
1153
+
1154
+ def _norm(self, x):
1155
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
1156
+
1157
+ def forward(self, x):
1158
+ if rms_norm is not None and x.is_cuda:
1159
+ return rms_norm(x, self.weight, self.eps)
1160
+ else:
1161
+ output = self._norm(x.float()).type_as(x)
1162
+ return output * self.weight
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,860 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 19313870336
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00002-of-00002.bin",
7
+ "transformer.h.0.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
8
+ "transformer.h.0.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
9
+ "transformer.h.0.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
10
+ "transformer.h.0.ln_1.weight": "pytorch_model-00001-of-00002.bin",
11
+ "transformer.h.0.ln_2.weight": "pytorch_model-00001-of-00002.bin",
12
+ "transformer.h.0.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
13
+ "transformer.h.0.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
14
+ "transformer.h.0.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
15
+ "transformer.h.1.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
16
+ "transformer.h.1.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
17
+ "transformer.h.1.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
18
+ "transformer.h.1.ln_1.weight": "pytorch_model-00001-of-00002.bin",
19
+ "transformer.h.1.ln_2.weight": "pytorch_model-00001-of-00002.bin",
20
+ "transformer.h.1.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
21
+ "transformer.h.1.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
22
+ "transformer.h.1.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
23
+ "transformer.h.10.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
24
+ "transformer.h.10.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
25
+ "transformer.h.10.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
26
+ "transformer.h.10.ln_1.weight": "pytorch_model-00001-of-00002.bin",
27
+ "transformer.h.10.ln_2.weight": "pytorch_model-00001-of-00002.bin",
28
+ "transformer.h.10.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
29
+ "transformer.h.10.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
30
+ "transformer.h.10.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
31
+ "transformer.h.11.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
32
+ "transformer.h.11.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
33
+ "transformer.h.11.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
34
+ "transformer.h.11.ln_1.weight": "pytorch_model-00001-of-00002.bin",
35
+ "transformer.h.11.ln_2.weight": "pytorch_model-00001-of-00002.bin",
36
+ "transformer.h.11.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
37
+ "transformer.h.11.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
38
+ "transformer.h.11.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
39
+ "transformer.h.12.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
40
+ "transformer.h.12.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
41
+ "transformer.h.12.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
42
+ "transformer.h.12.ln_1.weight": "pytorch_model-00001-of-00002.bin",
43
+ "transformer.h.12.ln_2.weight": "pytorch_model-00001-of-00002.bin",
44
+ "transformer.h.12.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
45
+ "transformer.h.12.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
46
+ "transformer.h.12.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
47
+ "transformer.h.13.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
48
+ "transformer.h.13.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
49
+ "transformer.h.13.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
50
+ "transformer.h.13.ln_1.weight": "pytorch_model-00001-of-00002.bin",
51
+ "transformer.h.13.ln_2.weight": "pytorch_model-00001-of-00002.bin",
52
+ "transformer.h.13.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
53
+ "transformer.h.13.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
54
+ "transformer.h.13.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
55
+ "transformer.h.14.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
56
+ "transformer.h.14.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
57
+ "transformer.h.14.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
58
+ "transformer.h.14.ln_1.weight": "pytorch_model-00001-of-00002.bin",
59
+ "transformer.h.14.ln_2.weight": "pytorch_model-00001-of-00002.bin",
60
+ "transformer.h.14.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
61
+ "transformer.h.14.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
62
+ "transformer.h.14.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
63
+ "transformer.h.15.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
64
+ "transformer.h.15.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
65
+ "transformer.h.15.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
66
+ "transformer.h.15.ln_1.weight": "pytorch_model-00001-of-00002.bin",
67
+ "transformer.h.15.ln_2.weight": "pytorch_model-00001-of-00002.bin",
68
+ "transformer.h.15.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
69
+ "transformer.h.15.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
70
+ "transformer.h.15.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
71
+ "transformer.h.16.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
72
+ "transformer.h.16.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
73
+ "transformer.h.16.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
74
+ "transformer.h.16.ln_1.weight": "pytorch_model-00001-of-00002.bin",
75
+ "transformer.h.16.ln_2.weight": "pytorch_model-00001-of-00002.bin",
76
+ "transformer.h.16.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
77
+ "transformer.h.16.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
78
+ "transformer.h.16.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
79
+ "transformer.h.17.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
80
+ "transformer.h.17.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
81
+ "transformer.h.17.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
82
+ "transformer.h.17.ln_1.weight": "pytorch_model-00001-of-00002.bin",
83
+ "transformer.h.17.ln_2.weight": "pytorch_model-00001-of-00002.bin",
84
+ "transformer.h.17.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
85
+ "transformer.h.17.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
86
+ "transformer.h.17.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
87
+ "transformer.h.18.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
88
+ "transformer.h.18.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
89
+ "transformer.h.18.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
90
+ "transformer.h.18.ln_1.weight": "pytorch_model-00001-of-00002.bin",
91
+ "transformer.h.18.ln_2.weight": "pytorch_model-00001-of-00002.bin",
92
+ "transformer.h.18.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
93
+ "transformer.h.18.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
94
+ "transformer.h.18.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
95
+ "transformer.h.19.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
96
+ "transformer.h.19.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
97
+ "transformer.h.19.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
98
+ "transformer.h.19.ln_1.weight": "pytorch_model-00001-of-00002.bin",
99
+ "transformer.h.19.ln_2.weight": "pytorch_model-00001-of-00002.bin",
100
+ "transformer.h.19.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
101
+ "transformer.h.19.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
102
+ "transformer.h.19.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
103
+ "transformer.h.2.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
104
+ "transformer.h.2.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
105
+ "transformer.h.2.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
106
+ "transformer.h.2.ln_1.weight": "pytorch_model-00001-of-00002.bin",
107
+ "transformer.h.2.ln_2.weight": "pytorch_model-00001-of-00002.bin",
108
+ "transformer.h.2.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
109
+ "transformer.h.2.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
110
+ "transformer.h.2.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
111
+ "transformer.h.20.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
112
+ "transformer.h.20.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
113
+ "transformer.h.20.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
114
+ "transformer.h.20.ln_1.weight": "pytorch_model-00001-of-00002.bin",
115
+ "transformer.h.20.ln_2.weight": "pytorch_model-00001-of-00002.bin",
116
+ "transformer.h.20.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
117
+ "transformer.h.20.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
118
+ "transformer.h.20.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
119
+ "transformer.h.21.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
120
+ "transformer.h.21.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
121
+ "transformer.h.21.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
122
+ "transformer.h.21.ln_1.weight": "pytorch_model-00001-of-00002.bin",
123
+ "transformer.h.21.ln_2.weight": "pytorch_model-00001-of-00002.bin",
124
+ "transformer.h.21.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
125
+ "transformer.h.21.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
126
+ "transformer.h.21.mlp.w2.weight": "pytorch_model-00002-of-00002.bin",
127
+ "transformer.h.22.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
128
+ "transformer.h.22.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
129
+ "transformer.h.22.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
130
+ "transformer.h.22.ln_1.weight": "pytorch_model-00002-of-00002.bin",
131
+ "transformer.h.22.ln_2.weight": "pytorch_model-00002-of-00002.bin",
132
+ "transformer.h.22.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
133
+ "transformer.h.22.mlp.w1.weight": "pytorch_model-00002-of-00002.bin",
134
+ "transformer.h.22.mlp.w2.weight": "pytorch_model-00002-of-00002.bin",
135
+ "transformer.h.23.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
136
+ "transformer.h.23.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
137
+ "transformer.h.23.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
138
+ "transformer.h.23.ln_1.weight": "pytorch_model-00002-of-00002.bin",
139
+ "transformer.h.23.ln_2.weight": "pytorch_model-00002-of-00002.bin",
140
+ "transformer.h.23.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
141
+ "transformer.h.23.mlp.w1.weight": "pytorch_model-00002-of-00002.bin",
142
+ "transformer.h.23.mlp.w2.weight": "pytorch_model-00002-of-00002.bin",
143
+ "transformer.h.24.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
144
+ "transformer.h.24.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
145
+ "transformer.h.24.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
146
+ "transformer.h.24.ln_1.weight": "pytorch_model-00002-of-00002.bin",
147
+ "transformer.h.24.ln_2.weight": "pytorch_model-00002-of-00002.bin",
148
+ "transformer.h.24.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
149
+ "transformer.h.24.mlp.w1.weight": "pytorch_model-00002-of-00002.bin",
150
+ "transformer.h.24.mlp.w2.weight": "pytorch_model-00002-of-00002.bin",
151
+ "transformer.h.25.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
152
+ "transformer.h.25.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
153
+ "transformer.h.25.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
154
+ "transformer.h.25.ln_1.weight": "pytorch_model-00002-of-00002.bin",
155
+ "transformer.h.25.ln_2.weight": "pytorch_model-00002-of-00002.bin",
156
+ "transformer.h.25.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
157
+ "transformer.h.25.mlp.w1.weight": "pytorch_model-00002-of-00002.bin",
158
+ "transformer.h.25.mlp.w2.weight": "pytorch_model-00002-of-00002.bin",
159
+ "transformer.h.26.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
160
+ "transformer.h.26.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
161
+ "transformer.h.26.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
162
+ "transformer.h.26.ln_1.weight": "pytorch_model-00002-of-00002.bin",
163
+ "transformer.h.26.ln_2.weight": "pytorch_model-00002-of-00002.bin",
164
+ "transformer.h.26.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
165
+ "transformer.h.26.mlp.w1.weight": "pytorch_model-00002-of-00002.bin",
166
+ "transformer.h.26.mlp.w2.weight": "pytorch_model-00002-of-00002.bin",
167
+ "transformer.h.27.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
168
+ "transformer.h.27.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
169
+ "transformer.h.27.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
170
+ "transformer.h.27.ln_1.weight": "pytorch_model-00002-of-00002.bin",
171
+ "transformer.h.27.ln_2.weight": "pytorch_model-00002-of-00002.bin",
172
+ "transformer.h.27.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
173
+ "transformer.h.27.mlp.w1.weight": "pytorch_model-00002-of-00002.bin",
174
+ "transformer.h.27.mlp.w2.weight": "pytorch_model-00002-of-00002.bin",
175
+ "transformer.h.28.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
176
+ "transformer.h.28.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
177
+ "transformer.h.28.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
178
+ "transformer.h.28.ln_1.weight": "pytorch_model-00002-of-00002.bin",
179
+ "transformer.h.28.ln_2.weight": "pytorch_model-00002-of-00002.bin",
180
+ "transformer.h.28.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
181
+ "transformer.h.28.mlp.w1.weight": "pytorch_model-00002-of-00002.bin",
182
+ "transformer.h.28.mlp.w2.weight": "pytorch_model-00002-of-00002.bin",
183
+ "transformer.h.29.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
184
+ "transformer.h.29.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
185
+ "transformer.h.29.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
186
+ "transformer.h.29.ln_1.weight": "pytorch_model-00002-of-00002.bin",
187
+ "transformer.h.29.ln_2.weight": "pytorch_model-00002-of-00002.bin",
188
+ "transformer.h.29.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
189
+ "transformer.h.29.mlp.w1.weight": "pytorch_model-00002-of-00002.bin",
190
+ "transformer.h.29.mlp.w2.weight": "pytorch_model-00002-of-00002.bin",
191
+ "transformer.h.3.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
192
+ "transformer.h.3.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
193
+ "transformer.h.3.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
194
+ "transformer.h.3.ln_1.weight": "pytorch_model-00001-of-00002.bin",
195
+ "transformer.h.3.ln_2.weight": "pytorch_model-00001-of-00002.bin",
196
+ "transformer.h.3.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
197
+ "transformer.h.3.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
198
+ "transformer.h.3.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
199
+ "transformer.h.30.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
200
+ "transformer.h.30.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
201
+ "transformer.h.30.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
202
+ "transformer.h.30.ln_1.weight": "pytorch_model-00002-of-00002.bin",
203
+ "transformer.h.30.ln_2.weight": "pytorch_model-00002-of-00002.bin",
204
+ "transformer.h.30.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
205
+ "transformer.h.30.mlp.w1.weight": "pytorch_model-00002-of-00002.bin",
206
+ "transformer.h.30.mlp.w2.weight": "pytorch_model-00002-of-00002.bin",
207
+ "transformer.h.31.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
208
+ "transformer.h.31.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
209
+ "transformer.h.31.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
210
+ "transformer.h.31.ln_1.weight": "pytorch_model-00002-of-00002.bin",
211
+ "transformer.h.31.ln_2.weight": "pytorch_model-00002-of-00002.bin",
212
+ "transformer.h.31.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
213
+ "transformer.h.31.mlp.w1.weight": "pytorch_model-00002-of-00002.bin",
214
+ "transformer.h.31.mlp.w2.weight": "pytorch_model-00002-of-00002.bin",
215
+ "transformer.h.4.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
216
+ "transformer.h.4.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
217
+ "transformer.h.4.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
218
+ "transformer.h.4.ln_1.weight": "pytorch_model-00001-of-00002.bin",
219
+ "transformer.h.4.ln_2.weight": "pytorch_model-00001-of-00002.bin",
220
+ "transformer.h.4.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
221
+ "transformer.h.4.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
222
+ "transformer.h.4.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
223
+ "transformer.h.5.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
224
+ "transformer.h.5.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
225
+ "transformer.h.5.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
226
+ "transformer.h.5.ln_1.weight": "pytorch_model-00001-of-00002.bin",
227
+ "transformer.h.5.ln_2.weight": "pytorch_model-00001-of-00002.bin",
228
+ "transformer.h.5.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
229
+ "transformer.h.5.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
230
+ "transformer.h.5.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
231
+ "transformer.h.6.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
232
+ "transformer.h.6.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
233
+ "transformer.h.6.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
234
+ "transformer.h.6.ln_1.weight": "pytorch_model-00001-of-00002.bin",
235
+ "transformer.h.6.ln_2.weight": "pytorch_model-00001-of-00002.bin",
236
+ "transformer.h.6.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
237
+ "transformer.h.6.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
238
+ "transformer.h.6.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
239
+ "transformer.h.7.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
240
+ "transformer.h.7.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
241
+ "transformer.h.7.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
242
+ "transformer.h.7.ln_1.weight": "pytorch_model-00001-of-00002.bin",
243
+ "transformer.h.7.ln_2.weight": "pytorch_model-00001-of-00002.bin",
244
+ "transformer.h.7.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
245
+ "transformer.h.7.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
246
+ "transformer.h.7.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
247
+ "transformer.h.8.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
248
+ "transformer.h.8.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
249
+ "transformer.h.8.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
250
+ "transformer.h.8.ln_1.weight": "pytorch_model-00001-of-00002.bin",
251
+ "transformer.h.8.ln_2.weight": "pytorch_model-00001-of-00002.bin",
252
+ "transformer.h.8.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
253
+ "transformer.h.8.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
254
+ "transformer.h.8.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
255
+ "transformer.h.9.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
256
+ "transformer.h.9.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
257
+ "transformer.h.9.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
258
+ "transformer.h.9.ln_1.weight": "pytorch_model-00001-of-00002.bin",
259
+ "transformer.h.9.ln_2.weight": "pytorch_model-00001-of-00002.bin",
260
+ "transformer.h.9.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
261
+ "transformer.h.9.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
262
+ "transformer.h.9.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
263
+ "transformer.ln_f.weight": "pytorch_model-00002-of-00002.bin",
264
+ "transformer.visual.attn_pool.attn.in_proj_bias": "pytorch_model-00002-of-00002.bin",
265
+ "transformer.visual.attn_pool.attn.in_proj_weight": "pytorch_model-00002-of-00002.bin",
266
+ "transformer.visual.attn_pool.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
267
+ "transformer.visual.attn_pool.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
268
+ "transformer.visual.attn_pool.kv_proj.weight": "pytorch_model-00002-of-00002.bin",
269
+ "transformer.visual.attn_pool.ln_kv.bias": "pytorch_model-00002-of-00002.bin",
270
+ "transformer.visual.attn_pool.ln_kv.weight": "pytorch_model-00002-of-00002.bin",
271
+ "transformer.visual.attn_pool.ln_q.bias": "pytorch_model-00002-of-00002.bin",
272
+ "transformer.visual.attn_pool.ln_q.weight": "pytorch_model-00002-of-00002.bin",
273
+ "transformer.visual.attn_pool.pos_embed": "pytorch_model-00002-of-00002.bin",
274
+ "transformer.visual.attn_pool.query": "pytorch_model-00002-of-00002.bin",
275
+ "transformer.visual.conv1.weight": "pytorch_model-00002-of-00002.bin",
276
+ "transformer.visual.ln_post.bias": "pytorch_model-00002-of-00002.bin",
277
+ "transformer.visual.ln_post.weight": "pytorch_model-00002-of-00002.bin",
278
+ "transformer.visual.ln_pre.bias": "pytorch_model-00002-of-00002.bin",
279
+ "transformer.visual.ln_pre.weight": "pytorch_model-00002-of-00002.bin",
280
+ "transformer.visual.positional_embedding": "pytorch_model-00002-of-00002.bin",
281
+ "transformer.visual.proj": "pytorch_model-00002-of-00002.bin",
282
+ "transformer.visual.transformer.resblocks.0.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
283
+ "transformer.visual.transformer.resblocks.0.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
284
+ "transformer.visual.transformer.resblocks.0.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
285
+ "transformer.visual.transformer.resblocks.0.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
286
+ "transformer.visual.transformer.resblocks.0.ln_1.bias": "pytorch_model-00002-of-00002.bin",
287
+ "transformer.visual.transformer.resblocks.0.ln_1.weight": "pytorch_model-00002-of-00002.bin",
288
+ "transformer.visual.transformer.resblocks.0.ln_2.bias": "pytorch_model-00002-of-00002.bin",
289
+ "transformer.visual.transformer.resblocks.0.ln_2.weight": "pytorch_model-00002-of-00002.bin",
290
+ "transformer.visual.transformer.resblocks.0.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
291
+ "transformer.visual.transformer.resblocks.0.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
292
+ "transformer.visual.transformer.resblocks.0.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
293
+ "transformer.visual.transformer.resblocks.0.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
294
+ "transformer.visual.transformer.resblocks.1.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
295
+ "transformer.visual.transformer.resblocks.1.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
296
+ "transformer.visual.transformer.resblocks.1.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
297
+ "transformer.visual.transformer.resblocks.1.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
298
+ "transformer.visual.transformer.resblocks.1.ln_1.bias": "pytorch_model-00002-of-00002.bin",
299
+ "transformer.visual.transformer.resblocks.1.ln_1.weight": "pytorch_model-00002-of-00002.bin",
300
+ "transformer.visual.transformer.resblocks.1.ln_2.bias": "pytorch_model-00002-of-00002.bin",
301
+ "transformer.visual.transformer.resblocks.1.ln_2.weight": "pytorch_model-00002-of-00002.bin",
302
+ "transformer.visual.transformer.resblocks.1.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
303
+ "transformer.visual.transformer.resblocks.1.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
304
+ "transformer.visual.transformer.resblocks.1.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
305
+ "transformer.visual.transformer.resblocks.1.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
306
+ "transformer.visual.transformer.resblocks.10.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
307
+ "transformer.visual.transformer.resblocks.10.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
308
+ "transformer.visual.transformer.resblocks.10.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
309
+ "transformer.visual.transformer.resblocks.10.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
310
+ "transformer.visual.transformer.resblocks.10.ln_1.bias": "pytorch_model-00002-of-00002.bin",
311
+ "transformer.visual.transformer.resblocks.10.ln_1.weight": "pytorch_model-00002-of-00002.bin",
312
+ "transformer.visual.transformer.resblocks.10.ln_2.bias": "pytorch_model-00002-of-00002.bin",
313
+ "transformer.visual.transformer.resblocks.10.ln_2.weight": "pytorch_model-00002-of-00002.bin",
314
+ "transformer.visual.transformer.resblocks.10.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
315
+ "transformer.visual.transformer.resblocks.10.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
316
+ "transformer.visual.transformer.resblocks.10.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
317
+ "transformer.visual.transformer.resblocks.10.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
318
+ "transformer.visual.transformer.resblocks.11.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
319
+ "transformer.visual.transformer.resblocks.11.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
320
+ "transformer.visual.transformer.resblocks.11.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
321
+ "transformer.visual.transformer.resblocks.11.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
322
+ "transformer.visual.transformer.resblocks.11.ln_1.bias": "pytorch_model-00002-of-00002.bin",
323
+ "transformer.visual.transformer.resblocks.11.ln_1.weight": "pytorch_model-00002-of-00002.bin",
324
+ "transformer.visual.transformer.resblocks.11.ln_2.bias": "pytorch_model-00002-of-00002.bin",
325
+ "transformer.visual.transformer.resblocks.11.ln_2.weight": "pytorch_model-00002-of-00002.bin",
326
+ "transformer.visual.transformer.resblocks.11.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
327
+ "transformer.visual.transformer.resblocks.11.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
328
+ "transformer.visual.transformer.resblocks.11.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
329
+ "transformer.visual.transformer.resblocks.11.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
330
+ "transformer.visual.transformer.resblocks.12.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
331
+ "transformer.visual.transformer.resblocks.12.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
332
+ "transformer.visual.transformer.resblocks.12.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
333
+ "transformer.visual.transformer.resblocks.12.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
334
+ "transformer.visual.transformer.resblocks.12.ln_1.bias": "pytorch_model-00002-of-00002.bin",
335
+ "transformer.visual.transformer.resblocks.12.ln_1.weight": "pytorch_model-00002-of-00002.bin",
336
+ "transformer.visual.transformer.resblocks.12.ln_2.bias": "pytorch_model-00002-of-00002.bin",
337
+ "transformer.visual.transformer.resblocks.12.ln_2.weight": "pytorch_model-00002-of-00002.bin",
338
+ "transformer.visual.transformer.resblocks.12.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
339
+ "transformer.visual.transformer.resblocks.12.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
340
+ "transformer.visual.transformer.resblocks.12.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
341
+ "transformer.visual.transformer.resblocks.12.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
342
+ "transformer.visual.transformer.resblocks.13.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
343
+ "transformer.visual.transformer.resblocks.13.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
344
+ "transformer.visual.transformer.resblocks.13.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
345
+ "transformer.visual.transformer.resblocks.13.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
346
+ "transformer.visual.transformer.resblocks.13.ln_1.bias": "pytorch_model-00002-of-00002.bin",
347
+ "transformer.visual.transformer.resblocks.13.ln_1.weight": "pytorch_model-00002-of-00002.bin",
348
+ "transformer.visual.transformer.resblocks.13.ln_2.bias": "pytorch_model-00002-of-00002.bin",
349
+ "transformer.visual.transformer.resblocks.13.ln_2.weight": "pytorch_model-00002-of-00002.bin",
350
+ "transformer.visual.transformer.resblocks.13.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
351
+ "transformer.visual.transformer.resblocks.13.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
352
+ "transformer.visual.transformer.resblocks.13.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
353
+ "transformer.visual.transformer.resblocks.13.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
354
+ "transformer.visual.transformer.resblocks.14.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
355
+ "transformer.visual.transformer.resblocks.14.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
356
+ "transformer.visual.transformer.resblocks.14.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
357
+ "transformer.visual.transformer.resblocks.14.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
358
+ "transformer.visual.transformer.resblocks.14.ln_1.bias": "pytorch_model-00002-of-00002.bin",
359
+ "transformer.visual.transformer.resblocks.14.ln_1.weight": "pytorch_model-00002-of-00002.bin",
360
+ "transformer.visual.transformer.resblocks.14.ln_2.bias": "pytorch_model-00002-of-00002.bin",
361
+ "transformer.visual.transformer.resblocks.14.ln_2.weight": "pytorch_model-00002-of-00002.bin",
362
+ "transformer.visual.transformer.resblocks.14.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
363
+ "transformer.visual.transformer.resblocks.14.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
364
+ "transformer.visual.transformer.resblocks.14.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
365
+ "transformer.visual.transformer.resblocks.14.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
366
+ "transformer.visual.transformer.resblocks.15.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
367
+ "transformer.visual.transformer.resblocks.15.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
368
+ "transformer.visual.transformer.resblocks.15.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
369
+ "transformer.visual.transformer.resblocks.15.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
370
+ "transformer.visual.transformer.resblocks.15.ln_1.bias": "pytorch_model-00002-of-00002.bin",
371
+ "transformer.visual.transformer.resblocks.15.ln_1.weight": "pytorch_model-00002-of-00002.bin",
372
+ "transformer.visual.transformer.resblocks.15.ln_2.bias": "pytorch_model-00002-of-00002.bin",
373
+ "transformer.visual.transformer.resblocks.15.ln_2.weight": "pytorch_model-00002-of-00002.bin",
374
+ "transformer.visual.transformer.resblocks.15.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
375
+ "transformer.visual.transformer.resblocks.15.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
376
+ "transformer.visual.transformer.resblocks.15.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
377
+ "transformer.visual.transformer.resblocks.15.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
378
+ "transformer.visual.transformer.resblocks.16.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
379
+ "transformer.visual.transformer.resblocks.16.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
380
+ "transformer.visual.transformer.resblocks.16.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
381
+ "transformer.visual.transformer.resblocks.16.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
382
+ "transformer.visual.transformer.resblocks.16.ln_1.bias": "pytorch_model-00002-of-00002.bin",
383
+ "transformer.visual.transformer.resblocks.16.ln_1.weight": "pytorch_model-00002-of-00002.bin",
384
+ "transformer.visual.transformer.resblocks.16.ln_2.bias": "pytorch_model-00002-of-00002.bin",
385
+ "transformer.visual.transformer.resblocks.16.ln_2.weight": "pytorch_model-00002-of-00002.bin",
386
+ "transformer.visual.transformer.resblocks.16.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
387
+ "transformer.visual.transformer.resblocks.16.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
388
+ "transformer.visual.transformer.resblocks.16.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
389
+ "transformer.visual.transformer.resblocks.16.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
390
+ "transformer.visual.transformer.resblocks.17.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
391
+ "transformer.visual.transformer.resblocks.17.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
392
+ "transformer.visual.transformer.resblocks.17.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
393
+ "transformer.visual.transformer.resblocks.17.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
394
+ "transformer.visual.transformer.resblocks.17.ln_1.bias": "pytorch_model-00002-of-00002.bin",
395
+ "transformer.visual.transformer.resblocks.17.ln_1.weight": "pytorch_model-00002-of-00002.bin",
396
+ "transformer.visual.transformer.resblocks.17.ln_2.bias": "pytorch_model-00002-of-00002.bin",
397
+ "transformer.visual.transformer.resblocks.17.ln_2.weight": "pytorch_model-00002-of-00002.bin",
398
+ "transformer.visual.transformer.resblocks.17.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
399
+ "transformer.visual.transformer.resblocks.17.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
400
+ "transformer.visual.transformer.resblocks.17.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
401
+ "transformer.visual.transformer.resblocks.17.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
402
+ "transformer.visual.transformer.resblocks.18.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
403
+ "transformer.visual.transformer.resblocks.18.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
404
+ "transformer.visual.transformer.resblocks.18.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
405
+ "transformer.visual.transformer.resblocks.18.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
406
+ "transformer.visual.transformer.resblocks.18.ln_1.bias": "pytorch_model-00002-of-00002.bin",
407
+ "transformer.visual.transformer.resblocks.18.ln_1.weight": "pytorch_model-00002-of-00002.bin",
408
+ "transformer.visual.transformer.resblocks.18.ln_2.bias": "pytorch_model-00002-of-00002.bin",
409
+ "transformer.visual.transformer.resblocks.18.ln_2.weight": "pytorch_model-00002-of-00002.bin",
410
+ "transformer.visual.transformer.resblocks.18.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
411
+ "transformer.visual.transformer.resblocks.18.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
412
+ "transformer.visual.transformer.resblocks.18.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
413
+ "transformer.visual.transformer.resblocks.18.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
414
+ "transformer.visual.transformer.resblocks.19.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
415
+ "transformer.visual.transformer.resblocks.19.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
416
+ "transformer.visual.transformer.resblocks.19.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
417
+ "transformer.visual.transformer.resblocks.19.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
418
+ "transformer.visual.transformer.resblocks.19.ln_1.bias": "pytorch_model-00002-of-00002.bin",
419
+ "transformer.visual.transformer.resblocks.19.ln_1.weight": "pytorch_model-00002-of-00002.bin",
420
+ "transformer.visual.transformer.resblocks.19.ln_2.bias": "pytorch_model-00002-of-00002.bin",
421
+ "transformer.visual.transformer.resblocks.19.ln_2.weight": "pytorch_model-00002-of-00002.bin",
422
+ "transformer.visual.transformer.resblocks.19.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
423
+ "transformer.visual.transformer.resblocks.19.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
424
+ "transformer.visual.transformer.resblocks.19.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
425
+ "transformer.visual.transformer.resblocks.19.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
426
+ "transformer.visual.transformer.resblocks.2.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
427
+ "transformer.visual.transformer.resblocks.2.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
428
+ "transformer.visual.transformer.resblocks.2.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
429
+ "transformer.visual.transformer.resblocks.2.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
430
+ "transformer.visual.transformer.resblocks.2.ln_1.bias": "pytorch_model-00002-of-00002.bin",
431
+ "transformer.visual.transformer.resblocks.2.ln_1.weight": "pytorch_model-00002-of-00002.bin",
432
+ "transformer.visual.transformer.resblocks.2.ln_2.bias": "pytorch_model-00002-of-00002.bin",
433
+ "transformer.visual.transformer.resblocks.2.ln_2.weight": "pytorch_model-00002-of-00002.bin",
434
+ "transformer.visual.transformer.resblocks.2.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
435
+ "transformer.visual.transformer.resblocks.2.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
436
+ "transformer.visual.transformer.resblocks.2.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
437
+ "transformer.visual.transformer.resblocks.2.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
438
+ "transformer.visual.transformer.resblocks.20.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
439
+ "transformer.visual.transformer.resblocks.20.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
440
+ "transformer.visual.transformer.resblocks.20.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
441
+ "transformer.visual.transformer.resblocks.20.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
442
+ "transformer.visual.transformer.resblocks.20.ln_1.bias": "pytorch_model-00002-of-00002.bin",
443
+ "transformer.visual.transformer.resblocks.20.ln_1.weight": "pytorch_model-00002-of-00002.bin",
444
+ "transformer.visual.transformer.resblocks.20.ln_2.bias": "pytorch_model-00002-of-00002.bin",
445
+ "transformer.visual.transformer.resblocks.20.ln_2.weight": "pytorch_model-00002-of-00002.bin",
446
+ "transformer.visual.transformer.resblocks.20.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
447
+ "transformer.visual.transformer.resblocks.20.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
448
+ "transformer.visual.transformer.resblocks.20.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
449
+ "transformer.visual.transformer.resblocks.20.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
450
+ "transformer.visual.transformer.resblocks.21.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
451
+ "transformer.visual.transformer.resblocks.21.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
452
+ "transformer.visual.transformer.resblocks.21.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
453
+ "transformer.visual.transformer.resblocks.21.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
454
+ "transformer.visual.transformer.resblocks.21.ln_1.bias": "pytorch_model-00002-of-00002.bin",
455
+ "transformer.visual.transformer.resblocks.21.ln_1.weight": "pytorch_model-00002-of-00002.bin",
456
+ "transformer.visual.transformer.resblocks.21.ln_2.bias": "pytorch_model-00002-of-00002.bin",
457
+ "transformer.visual.transformer.resblocks.21.ln_2.weight": "pytorch_model-00002-of-00002.bin",
458
+ "transformer.visual.transformer.resblocks.21.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
459
+ "transformer.visual.transformer.resblocks.21.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
460
+ "transformer.visual.transformer.resblocks.21.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
461
+ "transformer.visual.transformer.resblocks.21.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
462
+ "transformer.visual.transformer.resblocks.22.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
463
+ "transformer.visual.transformer.resblocks.22.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
464
+ "transformer.visual.transformer.resblocks.22.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
465
+ "transformer.visual.transformer.resblocks.22.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
466
+ "transformer.visual.transformer.resblocks.22.ln_1.bias": "pytorch_model-00002-of-00002.bin",
467
+ "transformer.visual.transformer.resblocks.22.ln_1.weight": "pytorch_model-00002-of-00002.bin",
468
+ "transformer.visual.transformer.resblocks.22.ln_2.bias": "pytorch_model-00002-of-00002.bin",
469
+ "transformer.visual.transformer.resblocks.22.ln_2.weight": "pytorch_model-00002-of-00002.bin",
470
+ "transformer.visual.transformer.resblocks.22.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
471
+ "transformer.visual.transformer.resblocks.22.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
472
+ "transformer.visual.transformer.resblocks.22.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
473
+ "transformer.visual.transformer.resblocks.22.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
474
+ "transformer.visual.transformer.resblocks.23.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
475
+ "transformer.visual.transformer.resblocks.23.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
476
+ "transformer.visual.transformer.resblocks.23.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
477
+ "transformer.visual.transformer.resblocks.23.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
478
+ "transformer.visual.transformer.resblocks.23.ln_1.bias": "pytorch_model-00002-of-00002.bin",
479
+ "transformer.visual.transformer.resblocks.23.ln_1.weight": "pytorch_model-00002-of-00002.bin",
480
+ "transformer.visual.transformer.resblocks.23.ln_2.bias": "pytorch_model-00002-of-00002.bin",
481
+ "transformer.visual.transformer.resblocks.23.ln_2.weight": "pytorch_model-00002-of-00002.bin",
482
+ "transformer.visual.transformer.resblocks.23.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
483
+ "transformer.visual.transformer.resblocks.23.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
484
+ "transformer.visual.transformer.resblocks.23.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
485
+ "transformer.visual.transformer.resblocks.23.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
486
+ "transformer.visual.transformer.resblocks.24.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
487
+ "transformer.visual.transformer.resblocks.24.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
488
+ "transformer.visual.transformer.resblocks.24.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
489
+ "transformer.visual.transformer.resblocks.24.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
490
+ "transformer.visual.transformer.resblocks.24.ln_1.bias": "pytorch_model-00002-of-00002.bin",
491
+ "transformer.visual.transformer.resblocks.24.ln_1.weight": "pytorch_model-00002-of-00002.bin",
492
+ "transformer.visual.transformer.resblocks.24.ln_2.bias": "pytorch_model-00002-of-00002.bin",
493
+ "transformer.visual.transformer.resblocks.24.ln_2.weight": "pytorch_model-00002-of-00002.bin",
494
+ "transformer.visual.transformer.resblocks.24.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
495
+ "transformer.visual.transformer.resblocks.24.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
496
+ "transformer.visual.transformer.resblocks.24.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
497
+ "transformer.visual.transformer.resblocks.24.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
498
+ "transformer.visual.transformer.resblocks.25.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
499
+ "transformer.visual.transformer.resblocks.25.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
500
+ "transformer.visual.transformer.resblocks.25.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
501
+ "transformer.visual.transformer.resblocks.25.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
502
+ "transformer.visual.transformer.resblocks.25.ln_1.bias": "pytorch_model-00002-of-00002.bin",
503
+ "transformer.visual.transformer.resblocks.25.ln_1.weight": "pytorch_model-00002-of-00002.bin",
504
+ "transformer.visual.transformer.resblocks.25.ln_2.bias": "pytorch_model-00002-of-00002.bin",
505
+ "transformer.visual.transformer.resblocks.25.ln_2.weight": "pytorch_model-00002-of-00002.bin",
506
+ "transformer.visual.transformer.resblocks.25.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
507
+ "transformer.visual.transformer.resblocks.25.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
508
+ "transformer.visual.transformer.resblocks.25.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
509
+ "transformer.visual.transformer.resblocks.25.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
510
+ "transformer.visual.transformer.resblocks.26.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
511
+ "transformer.visual.transformer.resblocks.26.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
512
+ "transformer.visual.transformer.resblocks.26.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
513
+ "transformer.visual.transformer.resblocks.26.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
514
+ "transformer.visual.transformer.resblocks.26.ln_1.bias": "pytorch_model-00002-of-00002.bin",
515
+ "transformer.visual.transformer.resblocks.26.ln_1.weight": "pytorch_model-00002-of-00002.bin",
516
+ "transformer.visual.transformer.resblocks.26.ln_2.bias": "pytorch_model-00002-of-00002.bin",
517
+ "transformer.visual.transformer.resblocks.26.ln_2.weight": "pytorch_model-00002-of-00002.bin",
518
+ "transformer.visual.transformer.resblocks.26.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
519
+ "transformer.visual.transformer.resblocks.26.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
520
+ "transformer.visual.transformer.resblocks.26.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
521
+ "transformer.visual.transformer.resblocks.26.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
522
+ "transformer.visual.transformer.resblocks.27.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
523
+ "transformer.visual.transformer.resblocks.27.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
524
+ "transformer.visual.transformer.resblocks.27.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
525
+ "transformer.visual.transformer.resblocks.27.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
526
+ "transformer.visual.transformer.resblocks.27.ln_1.bias": "pytorch_model-00002-of-00002.bin",
527
+ "transformer.visual.transformer.resblocks.27.ln_1.weight": "pytorch_model-00002-of-00002.bin",
528
+ "transformer.visual.transformer.resblocks.27.ln_2.bias": "pytorch_model-00002-of-00002.bin",
529
+ "transformer.visual.transformer.resblocks.27.ln_2.weight": "pytorch_model-00002-of-00002.bin",
530
+ "transformer.visual.transformer.resblocks.27.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
531
+ "transformer.visual.transformer.resblocks.27.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
532
+ "transformer.visual.transformer.resblocks.27.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
533
+ "transformer.visual.transformer.resblocks.27.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
534
+ "transformer.visual.transformer.resblocks.28.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
535
+ "transformer.visual.transformer.resblocks.28.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
536
+ "transformer.visual.transformer.resblocks.28.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
537
+ "transformer.visual.transformer.resblocks.28.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
538
+ "transformer.visual.transformer.resblocks.28.ln_1.bias": "pytorch_model-00002-of-00002.bin",
539
+ "transformer.visual.transformer.resblocks.28.ln_1.weight": "pytorch_model-00002-of-00002.bin",
540
+ "transformer.visual.transformer.resblocks.28.ln_2.bias": "pytorch_model-00002-of-00002.bin",
541
+ "transformer.visual.transformer.resblocks.28.ln_2.weight": "pytorch_model-00002-of-00002.bin",
542
+ "transformer.visual.transformer.resblocks.28.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
543
+ "transformer.visual.transformer.resblocks.28.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
544
+ "transformer.visual.transformer.resblocks.28.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
545
+ "transformer.visual.transformer.resblocks.28.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
546
+ "transformer.visual.transformer.resblocks.29.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
547
+ "transformer.visual.transformer.resblocks.29.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
548
+ "transformer.visual.transformer.resblocks.29.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
549
+ "transformer.visual.transformer.resblocks.29.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
550
+ "transformer.visual.transformer.resblocks.29.ln_1.bias": "pytorch_model-00002-of-00002.bin",
551
+ "transformer.visual.transformer.resblocks.29.ln_1.weight": "pytorch_model-00002-of-00002.bin",
552
+ "transformer.visual.transformer.resblocks.29.ln_2.bias": "pytorch_model-00002-of-00002.bin",
553
+ "transformer.visual.transformer.resblocks.29.ln_2.weight": "pytorch_model-00002-of-00002.bin",
554
+ "transformer.visual.transformer.resblocks.29.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
555
+ "transformer.visual.transformer.resblocks.29.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
556
+ "transformer.visual.transformer.resblocks.29.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
557
+ "transformer.visual.transformer.resblocks.29.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
558
+ "transformer.visual.transformer.resblocks.3.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
559
+ "transformer.visual.transformer.resblocks.3.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
560
+ "transformer.visual.transformer.resblocks.3.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
561
+ "transformer.visual.transformer.resblocks.3.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
562
+ "transformer.visual.transformer.resblocks.3.ln_1.bias": "pytorch_model-00002-of-00002.bin",
563
+ "transformer.visual.transformer.resblocks.3.ln_1.weight": "pytorch_model-00002-of-00002.bin",
564
+ "transformer.visual.transformer.resblocks.3.ln_2.bias": "pytorch_model-00002-of-00002.bin",
565
+ "transformer.visual.transformer.resblocks.3.ln_2.weight": "pytorch_model-00002-of-00002.bin",
566
+ "transformer.visual.transformer.resblocks.3.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
567
+ "transformer.visual.transformer.resblocks.3.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
568
+ "transformer.visual.transformer.resblocks.3.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
569
+ "transformer.visual.transformer.resblocks.3.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
570
+ "transformer.visual.transformer.resblocks.30.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
571
+ "transformer.visual.transformer.resblocks.30.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
572
+ "transformer.visual.transformer.resblocks.30.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
573
+ "transformer.visual.transformer.resblocks.30.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
574
+ "transformer.visual.transformer.resblocks.30.ln_1.bias": "pytorch_model-00002-of-00002.bin",
575
+ "transformer.visual.transformer.resblocks.30.ln_1.weight": "pytorch_model-00002-of-00002.bin",
576
+ "transformer.visual.transformer.resblocks.30.ln_2.bias": "pytorch_model-00002-of-00002.bin",
577
+ "transformer.visual.transformer.resblocks.30.ln_2.weight": "pytorch_model-00002-of-00002.bin",
578
+ "transformer.visual.transformer.resblocks.30.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
579
+ "transformer.visual.transformer.resblocks.30.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
580
+ "transformer.visual.transformer.resblocks.30.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
581
+ "transformer.visual.transformer.resblocks.30.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
582
+ "transformer.visual.transformer.resblocks.31.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
583
+ "transformer.visual.transformer.resblocks.31.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
584
+ "transformer.visual.transformer.resblocks.31.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
585
+ "transformer.visual.transformer.resblocks.31.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
586
+ "transformer.visual.transformer.resblocks.31.ln_1.bias": "pytorch_model-00002-of-00002.bin",
587
+ "transformer.visual.transformer.resblocks.31.ln_1.weight": "pytorch_model-00002-of-00002.bin",
588
+ "transformer.visual.transformer.resblocks.31.ln_2.bias": "pytorch_model-00002-of-00002.bin",
589
+ "transformer.visual.transformer.resblocks.31.ln_2.weight": "pytorch_model-00002-of-00002.bin",
590
+ "transformer.visual.transformer.resblocks.31.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
591
+ "transformer.visual.transformer.resblocks.31.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
592
+ "transformer.visual.transformer.resblocks.31.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
593
+ "transformer.visual.transformer.resblocks.31.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
594
+ "transformer.visual.transformer.resblocks.32.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
595
+ "transformer.visual.transformer.resblocks.32.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
596
+ "transformer.visual.transformer.resblocks.32.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
597
+ "transformer.visual.transformer.resblocks.32.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
598
+ "transformer.visual.transformer.resblocks.32.ln_1.bias": "pytorch_model-00002-of-00002.bin",
599
+ "transformer.visual.transformer.resblocks.32.ln_1.weight": "pytorch_model-00002-of-00002.bin",
600
+ "transformer.visual.transformer.resblocks.32.ln_2.bias": "pytorch_model-00002-of-00002.bin",
601
+ "transformer.visual.transformer.resblocks.32.ln_2.weight": "pytorch_model-00002-of-00002.bin",
602
+ "transformer.visual.transformer.resblocks.32.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
603
+ "transformer.visual.transformer.resblocks.32.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
604
+ "transformer.visual.transformer.resblocks.32.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
605
+ "transformer.visual.transformer.resblocks.32.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
606
+ "transformer.visual.transformer.resblocks.33.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
607
+ "transformer.visual.transformer.resblocks.33.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
608
+ "transformer.visual.transformer.resblocks.33.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
609
+ "transformer.visual.transformer.resblocks.33.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
610
+ "transformer.visual.transformer.resblocks.33.ln_1.bias": "pytorch_model-00002-of-00002.bin",
611
+ "transformer.visual.transformer.resblocks.33.ln_1.weight": "pytorch_model-00002-of-00002.bin",
612
+ "transformer.visual.transformer.resblocks.33.ln_2.bias": "pytorch_model-00002-of-00002.bin",
613
+ "transformer.visual.transformer.resblocks.33.ln_2.weight": "pytorch_model-00002-of-00002.bin",
614
+ "transformer.visual.transformer.resblocks.33.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
615
+ "transformer.visual.transformer.resblocks.33.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
616
+ "transformer.visual.transformer.resblocks.33.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
617
+ "transformer.visual.transformer.resblocks.33.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
618
+ "transformer.visual.transformer.resblocks.34.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
619
+ "transformer.visual.transformer.resblocks.34.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
620
+ "transformer.visual.transformer.resblocks.34.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
621
+ "transformer.visual.transformer.resblocks.34.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
622
+ "transformer.visual.transformer.resblocks.34.ln_1.bias": "pytorch_model-00002-of-00002.bin",
623
+ "transformer.visual.transformer.resblocks.34.ln_1.weight": "pytorch_model-00002-of-00002.bin",
624
+ "transformer.visual.transformer.resblocks.34.ln_2.bias": "pytorch_model-00002-of-00002.bin",
625
+ "transformer.visual.transformer.resblocks.34.ln_2.weight": "pytorch_model-00002-of-00002.bin",
626
+ "transformer.visual.transformer.resblocks.34.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
627
+ "transformer.visual.transformer.resblocks.34.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
628
+ "transformer.visual.transformer.resblocks.34.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
629
+ "transformer.visual.transformer.resblocks.34.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
630
+ "transformer.visual.transformer.resblocks.35.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
631
+ "transformer.visual.transformer.resblocks.35.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
632
+ "transformer.visual.transformer.resblocks.35.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
633
+ "transformer.visual.transformer.resblocks.35.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
634
+ "transformer.visual.transformer.resblocks.35.ln_1.bias": "pytorch_model-00002-of-00002.bin",
635
+ "transformer.visual.transformer.resblocks.35.ln_1.weight": "pytorch_model-00002-of-00002.bin",
636
+ "transformer.visual.transformer.resblocks.35.ln_2.bias": "pytorch_model-00002-of-00002.bin",
637
+ "transformer.visual.transformer.resblocks.35.ln_2.weight": "pytorch_model-00002-of-00002.bin",
638
+ "transformer.visual.transformer.resblocks.35.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
639
+ "transformer.visual.transformer.resblocks.35.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
640
+ "transformer.visual.transformer.resblocks.35.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
641
+ "transformer.visual.transformer.resblocks.35.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
642
+ "transformer.visual.transformer.resblocks.36.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
643
+ "transformer.visual.transformer.resblocks.36.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
644
+ "transformer.visual.transformer.resblocks.36.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
645
+ "transformer.visual.transformer.resblocks.36.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
646
+ "transformer.visual.transformer.resblocks.36.ln_1.bias": "pytorch_model-00002-of-00002.bin",
647
+ "transformer.visual.transformer.resblocks.36.ln_1.weight": "pytorch_model-00002-of-00002.bin",
648
+ "transformer.visual.transformer.resblocks.36.ln_2.bias": "pytorch_model-00002-of-00002.bin",
649
+ "transformer.visual.transformer.resblocks.36.ln_2.weight": "pytorch_model-00002-of-00002.bin",
650
+ "transformer.visual.transformer.resblocks.36.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
651
+ "transformer.visual.transformer.resblocks.36.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
652
+ "transformer.visual.transformer.resblocks.36.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
653
+ "transformer.visual.transformer.resblocks.36.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
654
+ "transformer.visual.transformer.resblocks.37.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
655
+ "transformer.visual.transformer.resblocks.37.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
656
+ "transformer.visual.transformer.resblocks.37.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
657
+ "transformer.visual.transformer.resblocks.37.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
658
+ "transformer.visual.transformer.resblocks.37.ln_1.bias": "pytorch_model-00002-of-00002.bin",
659
+ "transformer.visual.transformer.resblocks.37.ln_1.weight": "pytorch_model-00002-of-00002.bin",
660
+ "transformer.visual.transformer.resblocks.37.ln_2.bias": "pytorch_model-00002-of-00002.bin",
661
+ "transformer.visual.transformer.resblocks.37.ln_2.weight": "pytorch_model-00002-of-00002.bin",
662
+ "transformer.visual.transformer.resblocks.37.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
663
+ "transformer.visual.transformer.resblocks.37.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
664
+ "transformer.visual.transformer.resblocks.37.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
665
+ "transformer.visual.transformer.resblocks.37.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
666
+ "transformer.visual.transformer.resblocks.38.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
667
+ "transformer.visual.transformer.resblocks.38.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
668
+ "transformer.visual.transformer.resblocks.38.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
669
+ "transformer.visual.transformer.resblocks.38.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
670
+ "transformer.visual.transformer.resblocks.38.ln_1.bias": "pytorch_model-00002-of-00002.bin",
671
+ "transformer.visual.transformer.resblocks.38.ln_1.weight": "pytorch_model-00002-of-00002.bin",
672
+ "transformer.visual.transformer.resblocks.38.ln_2.bias": "pytorch_model-00002-of-00002.bin",
673
+ "transformer.visual.transformer.resblocks.38.ln_2.weight": "pytorch_model-00002-of-00002.bin",
674
+ "transformer.visual.transformer.resblocks.38.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
675
+ "transformer.visual.transformer.resblocks.38.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
676
+ "transformer.visual.transformer.resblocks.38.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
677
+ "transformer.visual.transformer.resblocks.38.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
678
+ "transformer.visual.transformer.resblocks.39.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
679
+ "transformer.visual.transformer.resblocks.39.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
680
+ "transformer.visual.transformer.resblocks.39.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
681
+ "transformer.visual.transformer.resblocks.39.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
682
+ "transformer.visual.transformer.resblocks.39.ln_1.bias": "pytorch_model-00002-of-00002.bin",
683
+ "transformer.visual.transformer.resblocks.39.ln_1.weight": "pytorch_model-00002-of-00002.bin",
684
+ "transformer.visual.transformer.resblocks.39.ln_2.bias": "pytorch_model-00002-of-00002.bin",
685
+ "transformer.visual.transformer.resblocks.39.ln_2.weight": "pytorch_model-00002-of-00002.bin",
686
+ "transformer.visual.transformer.resblocks.39.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
687
+ "transformer.visual.transformer.resblocks.39.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
688
+ "transformer.visual.transformer.resblocks.39.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
689
+ "transformer.visual.transformer.resblocks.39.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
690
+ "transformer.visual.transformer.resblocks.4.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
691
+ "transformer.visual.transformer.resblocks.4.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
692
+ "transformer.visual.transformer.resblocks.4.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
693
+ "transformer.visual.transformer.resblocks.4.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
694
+ "transformer.visual.transformer.resblocks.4.ln_1.bias": "pytorch_model-00002-of-00002.bin",
695
+ "transformer.visual.transformer.resblocks.4.ln_1.weight": "pytorch_model-00002-of-00002.bin",
696
+ "transformer.visual.transformer.resblocks.4.ln_2.bias": "pytorch_model-00002-of-00002.bin",
697
+ "transformer.visual.transformer.resblocks.4.ln_2.weight": "pytorch_model-00002-of-00002.bin",
698
+ "transformer.visual.transformer.resblocks.4.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
699
+ "transformer.visual.transformer.resblocks.4.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
700
+ "transformer.visual.transformer.resblocks.4.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
701
+ "transformer.visual.transformer.resblocks.4.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
702
+ "transformer.visual.transformer.resblocks.40.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
703
+ "transformer.visual.transformer.resblocks.40.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
704
+ "transformer.visual.transformer.resblocks.40.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
705
+ "transformer.visual.transformer.resblocks.40.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
706
+ "transformer.visual.transformer.resblocks.40.ln_1.bias": "pytorch_model-00002-of-00002.bin",
707
+ "transformer.visual.transformer.resblocks.40.ln_1.weight": "pytorch_model-00002-of-00002.bin",
708
+ "transformer.visual.transformer.resblocks.40.ln_2.bias": "pytorch_model-00002-of-00002.bin",
709
+ "transformer.visual.transformer.resblocks.40.ln_2.weight": "pytorch_model-00002-of-00002.bin",
710
+ "transformer.visual.transformer.resblocks.40.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
711
+ "transformer.visual.transformer.resblocks.40.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
712
+ "transformer.visual.transformer.resblocks.40.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
713
+ "transformer.visual.transformer.resblocks.40.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
714
+ "transformer.visual.transformer.resblocks.41.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
715
+ "transformer.visual.transformer.resblocks.41.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
716
+ "transformer.visual.transformer.resblocks.41.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
717
+ "transformer.visual.transformer.resblocks.41.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
718
+ "transformer.visual.transformer.resblocks.41.ln_1.bias": "pytorch_model-00002-of-00002.bin",
719
+ "transformer.visual.transformer.resblocks.41.ln_1.weight": "pytorch_model-00002-of-00002.bin",
720
+ "transformer.visual.transformer.resblocks.41.ln_2.bias": "pytorch_model-00002-of-00002.bin",
721
+ "transformer.visual.transformer.resblocks.41.ln_2.weight": "pytorch_model-00002-of-00002.bin",
722
+ "transformer.visual.transformer.resblocks.41.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
723
+ "transformer.visual.transformer.resblocks.41.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
724
+ "transformer.visual.transformer.resblocks.41.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
725
+ "transformer.visual.transformer.resblocks.41.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
726
+ "transformer.visual.transformer.resblocks.42.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
727
+ "transformer.visual.transformer.resblocks.42.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
728
+ "transformer.visual.transformer.resblocks.42.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
729
+ "transformer.visual.transformer.resblocks.42.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
730
+ "transformer.visual.transformer.resblocks.42.ln_1.bias": "pytorch_model-00002-of-00002.bin",
731
+ "transformer.visual.transformer.resblocks.42.ln_1.weight": "pytorch_model-00002-of-00002.bin",
732
+ "transformer.visual.transformer.resblocks.42.ln_2.bias": "pytorch_model-00002-of-00002.bin",
733
+ "transformer.visual.transformer.resblocks.42.ln_2.weight": "pytorch_model-00002-of-00002.bin",
734
+ "transformer.visual.transformer.resblocks.42.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
735
+ "transformer.visual.transformer.resblocks.42.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
736
+ "transformer.visual.transformer.resblocks.42.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
737
+ "transformer.visual.transformer.resblocks.42.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
738
+ "transformer.visual.transformer.resblocks.43.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
739
+ "transformer.visual.transformer.resblocks.43.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
740
+ "transformer.visual.transformer.resblocks.43.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
741
+ "transformer.visual.transformer.resblocks.43.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
742
+ "transformer.visual.transformer.resblocks.43.ln_1.bias": "pytorch_model-00002-of-00002.bin",
743
+ "transformer.visual.transformer.resblocks.43.ln_1.weight": "pytorch_model-00002-of-00002.bin",
744
+ "transformer.visual.transformer.resblocks.43.ln_2.bias": "pytorch_model-00002-of-00002.bin",
745
+ "transformer.visual.transformer.resblocks.43.ln_2.weight": "pytorch_model-00002-of-00002.bin",
746
+ "transformer.visual.transformer.resblocks.43.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
747
+ "transformer.visual.transformer.resblocks.43.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
748
+ "transformer.visual.transformer.resblocks.43.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
749
+ "transformer.visual.transformer.resblocks.43.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
750
+ "transformer.visual.transformer.resblocks.44.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
751
+ "transformer.visual.transformer.resblocks.44.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
752
+ "transformer.visual.transformer.resblocks.44.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
753
+ "transformer.visual.transformer.resblocks.44.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
754
+ "transformer.visual.transformer.resblocks.44.ln_1.bias": "pytorch_model-00002-of-00002.bin",
755
+ "transformer.visual.transformer.resblocks.44.ln_1.weight": "pytorch_model-00002-of-00002.bin",
756
+ "transformer.visual.transformer.resblocks.44.ln_2.bias": "pytorch_model-00002-of-00002.bin",
757
+ "transformer.visual.transformer.resblocks.44.ln_2.weight": "pytorch_model-00002-of-00002.bin",
758
+ "transformer.visual.transformer.resblocks.44.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
759
+ "transformer.visual.transformer.resblocks.44.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
760
+ "transformer.visual.transformer.resblocks.44.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
761
+ "transformer.visual.transformer.resblocks.44.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
762
+ "transformer.visual.transformer.resblocks.45.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
763
+ "transformer.visual.transformer.resblocks.45.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
764
+ "transformer.visual.transformer.resblocks.45.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
765
+ "transformer.visual.transformer.resblocks.45.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
766
+ "transformer.visual.transformer.resblocks.45.ln_1.bias": "pytorch_model-00002-of-00002.bin",
767
+ "transformer.visual.transformer.resblocks.45.ln_1.weight": "pytorch_model-00002-of-00002.bin",
768
+ "transformer.visual.transformer.resblocks.45.ln_2.bias": "pytorch_model-00002-of-00002.bin",
769
+ "transformer.visual.transformer.resblocks.45.ln_2.weight": "pytorch_model-00002-of-00002.bin",
770
+ "transformer.visual.transformer.resblocks.45.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
771
+ "transformer.visual.transformer.resblocks.45.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
772
+ "transformer.visual.transformer.resblocks.45.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
773
+ "transformer.visual.transformer.resblocks.45.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
774
+ "transformer.visual.transformer.resblocks.46.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
775
+ "transformer.visual.transformer.resblocks.46.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
776
+ "transformer.visual.transformer.resblocks.46.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
777
+ "transformer.visual.transformer.resblocks.46.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
778
+ "transformer.visual.transformer.resblocks.46.ln_1.bias": "pytorch_model-00002-of-00002.bin",
779
+ "transformer.visual.transformer.resblocks.46.ln_1.weight": "pytorch_model-00002-of-00002.bin",
780
+ "transformer.visual.transformer.resblocks.46.ln_2.bias": "pytorch_model-00002-of-00002.bin",
781
+ "transformer.visual.transformer.resblocks.46.ln_2.weight": "pytorch_model-00002-of-00002.bin",
782
+ "transformer.visual.transformer.resblocks.46.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
783
+ "transformer.visual.transformer.resblocks.46.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
784
+ "transformer.visual.transformer.resblocks.46.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
785
+ "transformer.visual.transformer.resblocks.46.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
786
+ "transformer.visual.transformer.resblocks.47.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
787
+ "transformer.visual.transformer.resblocks.47.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
788
+ "transformer.visual.transformer.resblocks.47.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
789
+ "transformer.visual.transformer.resblocks.47.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
790
+ "transformer.visual.transformer.resblocks.47.ln_1.bias": "pytorch_model-00002-of-00002.bin",
791
+ "transformer.visual.transformer.resblocks.47.ln_1.weight": "pytorch_model-00002-of-00002.bin",
792
+ "transformer.visual.transformer.resblocks.47.ln_2.bias": "pytorch_model-00002-of-00002.bin",
793
+ "transformer.visual.transformer.resblocks.47.ln_2.weight": "pytorch_model-00002-of-00002.bin",
794
+ "transformer.visual.transformer.resblocks.47.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
795
+ "transformer.visual.transformer.resblocks.47.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
796
+ "transformer.visual.transformer.resblocks.47.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
797
+ "transformer.visual.transformer.resblocks.47.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
798
+ "transformer.visual.transformer.resblocks.5.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
799
+ "transformer.visual.transformer.resblocks.5.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
800
+ "transformer.visual.transformer.resblocks.5.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
801
+ "transformer.visual.transformer.resblocks.5.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
802
+ "transformer.visual.transformer.resblocks.5.ln_1.bias": "pytorch_model-00002-of-00002.bin",
803
+ "transformer.visual.transformer.resblocks.5.ln_1.weight": "pytorch_model-00002-of-00002.bin",
804
+ "transformer.visual.transformer.resblocks.5.ln_2.bias": "pytorch_model-00002-of-00002.bin",
805
+ "transformer.visual.transformer.resblocks.5.ln_2.weight": "pytorch_model-00002-of-00002.bin",
806
+ "transformer.visual.transformer.resblocks.5.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
807
+ "transformer.visual.transformer.resblocks.5.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
808
+ "transformer.visual.transformer.resblocks.5.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
809
+ "transformer.visual.transformer.resblocks.5.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
810
+ "transformer.visual.transformer.resblocks.6.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
811
+ "transformer.visual.transformer.resblocks.6.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
812
+ "transformer.visual.transformer.resblocks.6.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
813
+ "transformer.visual.transformer.resblocks.6.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
814
+ "transformer.visual.transformer.resblocks.6.ln_1.bias": "pytorch_model-00002-of-00002.bin",
815
+ "transformer.visual.transformer.resblocks.6.ln_1.weight": "pytorch_model-00002-of-00002.bin",
816
+ "transformer.visual.transformer.resblocks.6.ln_2.bias": "pytorch_model-00002-of-00002.bin",
817
+ "transformer.visual.transformer.resblocks.6.ln_2.weight": "pytorch_model-00002-of-00002.bin",
818
+ "transformer.visual.transformer.resblocks.6.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
819
+ "transformer.visual.transformer.resblocks.6.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
820
+ "transformer.visual.transformer.resblocks.6.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
821
+ "transformer.visual.transformer.resblocks.6.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
822
+ "transformer.visual.transformer.resblocks.7.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
823
+ "transformer.visual.transformer.resblocks.7.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
824
+ "transformer.visual.transformer.resblocks.7.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
825
+ "transformer.visual.transformer.resblocks.7.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
826
+ "transformer.visual.transformer.resblocks.7.ln_1.bias": "pytorch_model-00002-of-00002.bin",
827
+ "transformer.visual.transformer.resblocks.7.ln_1.weight": "pytorch_model-00002-of-00002.bin",
828
+ "transformer.visual.transformer.resblocks.7.ln_2.bias": "pytorch_model-00002-of-00002.bin",
829
+ "transformer.visual.transformer.resblocks.7.ln_2.weight": "pytorch_model-00002-of-00002.bin",
830
+ "transformer.visual.transformer.resblocks.7.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
831
+ "transformer.visual.transformer.resblocks.7.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
832
+ "transformer.visual.transformer.resblocks.7.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
833
+ "transformer.visual.transformer.resblocks.7.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
834
+ "transformer.visual.transformer.resblocks.8.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
835
+ "transformer.visual.transformer.resblocks.8.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
836
+ "transformer.visual.transformer.resblocks.8.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
837
+ "transformer.visual.transformer.resblocks.8.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
838
+ "transformer.visual.transformer.resblocks.8.ln_1.bias": "pytorch_model-00002-of-00002.bin",
839
+ "transformer.visual.transformer.resblocks.8.ln_1.weight": "pytorch_model-00002-of-00002.bin",
840
+ "transformer.visual.transformer.resblocks.8.ln_2.bias": "pytorch_model-00002-of-00002.bin",
841
+ "transformer.visual.transformer.resblocks.8.ln_2.weight": "pytorch_model-00002-of-00002.bin",
842
+ "transformer.visual.transformer.resblocks.8.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
843
+ "transformer.visual.transformer.resblocks.8.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
844
+ "transformer.visual.transformer.resblocks.8.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
845
+ "transformer.visual.transformer.resblocks.8.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
846
+ "transformer.visual.transformer.resblocks.9.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
847
+ "transformer.visual.transformer.resblocks.9.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
848
+ "transformer.visual.transformer.resblocks.9.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
849
+ "transformer.visual.transformer.resblocks.9.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
850
+ "transformer.visual.transformer.resblocks.9.ln_1.bias": "pytorch_model-00002-of-00002.bin",
851
+ "transformer.visual.transformer.resblocks.9.ln_1.weight": "pytorch_model-00002-of-00002.bin",
852
+ "transformer.visual.transformer.resblocks.9.ln_2.bias": "pytorch_model-00002-of-00002.bin",
853
+ "transformer.visual.transformer.resblocks.9.ln_2.weight": "pytorch_model-00002-of-00002.bin",
854
+ "transformer.visual.transformer.resblocks.9.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
855
+ "transformer.visual.transformer.resblocks.9.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
856
+ "transformer.visual.transformer.resblocks.9.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
857
+ "transformer.visual.transformer.resblocks.9.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
858
+ "transformer.wte.weight": "pytorch_model-00001-of-00002.bin"
859
+ }
860
+ }
qwen.tiktoken ADDED
The diff for this file is too large to render. See raw diff
 
qwen_generation_utils.py ADDED
@@ -0,0 +1,420 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ """Generation support."""
7
+
8
+ from typing import Tuple, List, Union, Iterable
9
+
10
+ import numpy as np
11
+ import torch
12
+ import torch.nn.functional as F
13
+ from transformers import PreTrainedTokenizer
14
+ from transformers import logging
15
+ from transformers.generation import LogitsProcessor
16
+
17
+ logger = logging.get_logger(__name__)
18
+
19
+ # Types.
20
+ HistoryType = List[Tuple[str, str]]
21
+ TokensType = List[int]
22
+ BatchTokensType = List[List[int]]
23
+
24
+
25
+ def pad_batch(batch: BatchTokensType, pad_id: int, seq_length: int) -> BatchTokensType:
26
+ for tokens in batch:
27
+ context_length = len(tokens)
28
+ if context_length < seq_length:
29
+ tokens.extend([pad_id] * (seq_length - context_length))
30
+ return batch
31
+
32
+
33
+ def get_ltor_masks_and_position_ids(
34
+ data,
35
+ eod_token,
36
+ reset_position_ids,
37
+ reset_attention_mask,
38
+ eod_mask_loss,
39
+ ):
40
+ """Build masks and position id for left to right model."""
41
+
42
+ # Extract batch size and sequence length.
43
+ micro_batch_size, seq_length = data.size()
44
+
45
+ # Attention mask (lower triangular).
46
+ if reset_attention_mask:
47
+ att_mask_batch = micro_batch_size
48
+ else:
49
+ att_mask_batch = 1
50
+ attention_mask = torch.tril(
51
+ torch.ones((att_mask_batch, seq_length, seq_length), device=data.device)
52
+ ).view(att_mask_batch, 1, seq_length, seq_length)
53
+
54
+ # Loss mask.
55
+ loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
56
+ if eod_mask_loss:
57
+ loss_mask[data == eod_token] = 0.0
58
+
59
+ # Position ids.
60
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device)
61
+ position_ids = position_ids.unsqueeze(0).expand_as(data)
62
+ # We need to clone as the ids will be modifed based on batch index.
63
+ if reset_position_ids:
64
+ position_ids = position_ids.clone()
65
+
66
+ if reset_position_ids or reset_attention_mask:
67
+ # Loop through the batches:
68
+ for b in range(micro_batch_size):
69
+
70
+ # Find indecies where EOD token is.
71
+ eod_index = position_ids[b, data[b] == eod_token]
72
+ # Detach indecies from positions if going to modify positions.
73
+ if reset_position_ids:
74
+ eod_index = eod_index.clone()
75
+
76
+ # Loop through EOD indecies:
77
+ prev_index = 0
78
+ for j in range(eod_index.size()[0]):
79
+ i = eod_index[j]
80
+ # Mask attention loss.
81
+ if reset_attention_mask:
82
+ attention_mask[b, 0, (i + 1) :, : (i + 1)] = 0
83
+ # Reset positions.
84
+ if reset_position_ids:
85
+ position_ids[b, (i + 1) :] -= i + 1 - prev_index
86
+ prev_index = i + 1
87
+
88
+ # Convert attention mask to binary:
89
+ attention_mask = attention_mask < 0.5
90
+
91
+ return attention_mask, loss_mask, position_ids
92
+
93
+
94
+ def get_batch(context_tokens: torch.LongTensor, eod_id: int):
95
+ """Generate batch from context tokens."""
96
+ # Move to GPU.
97
+ tokens = context_tokens.contiguous().to(context_tokens.device)
98
+ # Get the attention mask and postition ids.
99
+ attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
100
+ tokens,
101
+ eod_id,
102
+ reset_position_ids=False,
103
+ reset_attention_mask=False,
104
+ eod_mask_loss=False,
105
+ )
106
+ return tokens, attention_mask, position_ids
107
+
108
+
109
+ def get_stop_words_ids(chat_format, tokenizer):
110
+ if chat_format == "raw":
111
+ stop_words_ids = [tokenizer.encode("Human:"), [tokenizer.eod_id]]
112
+ elif chat_format == "chatml":
113
+ stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]]
114
+ else:
115
+ raise NotImplementedError(f"Unknown chat format {chat_format!r}")
116
+ return stop_words_ids
117
+
118
+
119
+ def make_context(
120
+ tokenizer: PreTrainedTokenizer,
121
+ query: str,
122
+ history: List[Tuple[str, str]] = None,
123
+ system: str = "",
124
+ max_window_size: int = 6144,
125
+ chat_format: str = "chatml",
126
+ ):
127
+ if history is None:
128
+ history = []
129
+
130
+ if chat_format == "chatml":
131
+ im_start, im_end = "<|im_start|>", "<|im_end|>"
132
+ im_start_tokens = [tokenizer.im_start_id]
133
+ im_end_tokens = [tokenizer.im_end_id]
134
+ nl_tokens = tokenizer.encode("\n")
135
+
136
+ def _tokenize_str(role, content):
137
+ return f"{role}\n{content}", tokenizer.encode(
138
+ role, allowed_special=set(tokenizer.IMAGE_ST)
139
+ ) + nl_tokens + tokenizer.encode(content, allowed_special=set(tokenizer.IMAGE_ST))
140
+
141
+ system_text, system_tokens_part = _tokenize_str("system", system)
142
+ system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
143
+
144
+ raw_text = ""
145
+ context_tokens = []
146
+
147
+ for turn_query, turn_response in reversed(history):
148
+ query_text, query_tokens_part = _tokenize_str("user", turn_query)
149
+ query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
150
+ if turn_response is not None:
151
+ response_text, response_tokens_part = _tokenize_str(
152
+ "assistant", turn_response
153
+ )
154
+ response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
155
+
156
+ next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
157
+ prev_chat = (
158
+ f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
159
+ )
160
+ else:
161
+ next_context_tokens = nl_tokens + query_tokens + nl_tokens
162
+ prev_chat = f"\n{im_start}{query_text}{im_end}\n"
163
+
164
+ current_context_size = (
165
+ len(system_tokens) + len(next_context_tokens) + len(context_tokens)
166
+ )
167
+ if current_context_size < max_window_size:
168
+ context_tokens = next_context_tokens + context_tokens
169
+ raw_text = prev_chat + raw_text
170
+ else:
171
+ break
172
+
173
+ context_tokens = system_tokens + context_tokens
174
+ raw_text = f"{im_start}{system_text}{im_end}" + raw_text
175
+ context_tokens += (
176
+ nl_tokens
177
+ + im_start_tokens
178
+ + _tokenize_str("user", query)[1]
179
+ + im_end_tokens
180
+ + nl_tokens
181
+ + im_start_tokens
182
+ + tokenizer.encode("assistant")
183
+ + nl_tokens
184
+ )
185
+ raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"
186
+
187
+ elif chat_format == "raw":
188
+ raw_text = query
189
+ context_tokens = tokenizer.encode(raw_text)
190
+ else:
191
+ raise NotImplementedError(f"Unknown chat format {chat_format!r}")
192
+
193
+ return raw_text, context_tokens
194
+
195
+
196
+ def _decode_default(
197
+ tokens: List[int],
198
+ *,
199
+ stop_words: List[str],
200
+ eod_words: List[str],
201
+ tokenizer: PreTrainedTokenizer,
202
+ raw_text_len: int,
203
+ verbose: bool = False,
204
+ return_end_reason: bool = False,
205
+ errors: str='replace',
206
+ ):
207
+ trim_decode_tokens = tokenizer.decode(tokens, errors=errors)[raw_text_len:]
208
+ if verbose:
209
+ print("\nRaw Generate: ", trim_decode_tokens)
210
+
211
+ end_reason = f"Gen length {len(tokens)}"
212
+ for stop_word in stop_words:
213
+ trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
214
+ for eod_word in eod_words:
215
+ if eod_word in trim_decode_tokens:
216
+ end_reason = f"Gen {eod_word!r}"
217
+ trim_decode_tokens = trim_decode_tokens.split(eod_word)[0]
218
+ trim_decode_tokens = trim_decode_tokens.strip()
219
+ if verbose:
220
+ print("\nEnd Reason:", end_reason)
221
+ print("\nGenerate: ", trim_decode_tokens)
222
+
223
+ if return_end_reason:
224
+ return trim_decode_tokens, end_reason
225
+ else:
226
+ return trim_decode_tokens
227
+
228
+
229
+ def _decode_chatml(
230
+ tokens: List[int],
231
+ *,
232
+ stop_words: List[str],
233
+ eod_token_ids: List[int],
234
+ tokenizer: PreTrainedTokenizer,
235
+ raw_text_len: int,
236
+ context_length: int,
237
+ verbose: bool = False,
238
+ return_end_reason: bool = False,
239
+ errors: str='replace'
240
+ ):
241
+ end_reason = f"Gen length {len(tokens)}"
242
+ eod_token_idx = context_length
243
+ for eod_token_idx in range(context_length, len(tokens)):
244
+ if tokens[eod_token_idx] in eod_token_ids:
245
+ end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}"
246
+ break
247
+
248
+ trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx], errors=errors)[raw_text_len:]
249
+ if verbose:
250
+ print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens, errors=errors)[raw_text_len:])
251
+ print("\nRaw Generate:", trim_decode_tokens)
252
+ print("\nEnd Reason:", end_reason)
253
+ for stop_word in stop_words:
254
+ trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
255
+ trim_decode_tokens = trim_decode_tokens.strip()
256
+ if verbose:
257
+ print("\nGenerate:", trim_decode_tokens)
258
+
259
+ if return_end_reason:
260
+ return trim_decode_tokens, end_reason
261
+ else:
262
+ return trim_decode_tokens
263
+
264
+
265
+ def decode_tokens(
266
+ tokens: Union[torch.LongTensor, TokensType],
267
+ tokenizer: PreTrainedTokenizer,
268
+ raw_text_len: int,
269
+ context_length: int,
270
+ chat_format: str,
271
+ verbose: bool = False,
272
+ return_end_reason: bool = False,
273
+ errors: str="replace",
274
+ ) -> str:
275
+ if torch.is_tensor(tokens):
276
+ tokens = tokens.cpu().numpy().tolist()
277
+
278
+ if chat_format == "chatml":
279
+ return _decode_chatml(
280
+ tokens,
281
+ stop_words=[],
282
+ eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id],
283
+ tokenizer=tokenizer,
284
+ raw_text_len=raw_text_len,
285
+ context_length=context_length,
286
+ verbose=verbose,
287
+ return_end_reason=return_end_reason,
288
+ errors=errors,
289
+ )
290
+ elif chat_format == "raw":
291
+ return _decode_default(
292
+ tokens,
293
+ stop_words=["<|endoftext|>"],
294
+ eod_words=["<|endoftext|>"],
295
+ tokenizer=tokenizer,
296
+ raw_text_len=raw_text_len,
297
+ verbose=verbose,
298
+ return_end_reason=return_end_reason,
299
+ errors=errors,
300
+ )
301
+ else:
302
+ raise NotImplementedError(f"Unknown chat format {chat_format!r}")
303
+
304
+
305
+ class StopWordsLogitsProcessor(LogitsProcessor):
306
+ """
307
+ :class:`transformers.LogitsProcessor` that enforces that when specified sequences appear, stop geration.
308
+
309
+ Args:
310
+ stop_words_ids (:obj:`List[List[int]]`):
311
+ List of list of token ids of stop ids. In order to get the tokens of the words
312
+ that should not appear in the generated text, use :obj:`tokenizer(bad_word,
313
+ add_prefix_space=True).input_ids`.
314
+ eos_token_id (:obj:`int`):
315
+ The id of the `end-of-sequence` token.
316
+ """
317
+
318
+ def __init__(self, stop_words_ids: Iterable[Iterable[int]], eos_token_id: int):
319
+
320
+ if not isinstance(stop_words_ids, List) or len(stop_words_ids) == 0:
321
+ raise ValueError(
322
+ f"`stop_words_ids` has to be a non-emtpy list, but is {stop_words_ids}."
323
+ )
324
+ if any(not isinstance(bad_word_ids, list) for bad_word_ids in stop_words_ids):
325
+ raise ValueError(
326
+ f"`stop_words_ids` has to be a list of lists, but is {stop_words_ids}."
327
+ )
328
+ if any(
329
+ any(
330
+ (not isinstance(token_id, (int, np.integer)) or token_id < 0)
331
+ for token_id in stop_word_ids
332
+ )
333
+ for stop_word_ids in stop_words_ids
334
+ ):
335
+ raise ValueError(
336
+ f"Each list in `stop_words_ids` has to be a list of positive integers, but is {stop_words_ids}."
337
+ )
338
+
339
+ self.stop_words_ids = list(
340
+ filter(
341
+ lambda bad_token_seq: bad_token_seq != [eos_token_id], stop_words_ids
342
+ )
343
+ )
344
+ self.eos_token_id = eos_token_id
345
+ for stop_token_seq in self.stop_words_ids:
346
+ assert (
347
+ len(stop_token_seq) > 0
348
+ ), "Stop words token sequences {} cannot have an empty list".format(
349
+ stop_words_ids
350
+ )
351
+
352
+ def __call__(
353
+ self, input_ids: torch.LongTensor, scores: torch.FloatTensor
354
+ ) -> torch.FloatTensor:
355
+ stopped_samples = self._calc_stopped_samples(input_ids)
356
+ for i, should_stop in enumerate(stopped_samples):
357
+ if should_stop:
358
+ scores[i, self.eos_token_id] = float(2**15)
359
+ return scores
360
+
361
+ def _tokens_match(self, prev_tokens: torch.LongTensor, tokens: List[int]) -> bool:
362
+ if len(tokens) == 0:
363
+ # if bad word tokens is just one token always ban it
364
+ return True
365
+ elif len(tokens) > len(prev_tokens):
366
+ # if bad word tokens are longer then prev input_ids they can't be equal
367
+ return False
368
+ elif prev_tokens[-len(tokens) :].tolist() == tokens:
369
+ # if tokens match
370
+ return True
371
+ else:
372
+ return False
373
+
374
+ def _calc_stopped_samples(self, prev_input_ids: Iterable[int]) -> Iterable[int]:
375
+ stopped_samples = []
376
+ for prev_input_ids_slice in prev_input_ids:
377
+ match = False
378
+ for stop_token_seq in self.stop_words_ids:
379
+ if self._tokens_match(prev_input_ids_slice, stop_token_seq):
380
+ # if tokens do not match continue
381
+ match = True
382
+ break
383
+ stopped_samples.append(match)
384
+
385
+ return stopped_samples
386
+
387
+
388
+ def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")):
389
+ """This function has been mostly taken from huggingface conversational
390
+ ai code at
391
+ https://medium.com/huggingface/how-to-build-a-state-of-the-art-
392
+ conversational-ai-with-transfer-learning-2d818ac26313"""
393
+
394
+ if top_k > 0:
395
+ # Remove all tokens with a probability less than the
396
+ # last token of the top-k
397
+ indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
398
+ logits[indices_to_remove] = filter_value
399
+
400
+ if top_p > 0.0:
401
+ # Cconvert to 1D
402
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
403
+ cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
404
+
405
+ # Remove tokens with cumulative probability above the threshold
406
+ sorted_indices_to_remove = cumulative_probs > top_p
407
+ # Shift the indices to the right to keep also the first token
408
+ # above the threshold
409
+ sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
410
+ sorted_indices_to_remove[..., 0] = 0
411
+ for i in range(sorted_indices.size(0)):
412
+ indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
413
+ logits[i][indices_to_remove] = filter_value
414
+
415
+ return logits
416
+
417
+
418
+ def switch(val1, val2, boolean):
419
+ boolean = boolean.type_as(val1)
420
+ return (1 - boolean) * val1 + boolean * val2
special_tokens_map.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "pad_token": "<|endoftext|>"
3
+ }
tokenization_qwen.py ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ """Tokenization classes for QWen."""
7
+
8
+ import base64
9
+ import logging
10
+ import os
11
+ import requests
12
+ import unicodedata
13
+ from typing import Collection, Dict, List, Set, Tuple, Union, Any, Callable, Optional
14
+
15
+ import tiktoken
16
+ import numpy as np
17
+ from PIL import Image
18
+ from PIL import ImageFont
19
+ from PIL import ImageDraw
20
+ from transformers import PreTrainedTokenizer, AddedToken
21
+ from transformers.utils import try_to_load_from_cache
22
+
23
+ import matplotlib.colors as mcolors
24
+ from matplotlib.font_manager import FontProperties
25
+
26
+ logger = logging.getLogger(__name__)
27
+
28
+
29
+ VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken", "ttf": "SimSun.ttf"}
30
+ FONT_PATH = try_to_load_from_cache("Qwen/Qwen-VL-Chat", "SimSun.ttf")
31
+ if FONT_PATH is None:
32
+ FONT_PATH = "SimSun.ttf"
33
+
34
+ PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
35
+ ENDOFTEXT = "<|endoftext|>"
36
+ IMSTART = "<|im_start|>"
37
+ IMEND = "<|im_end|>"
38
+ # as the default behavior is changed to allow special tokens in
39
+ # regular texts, the surface forms of special tokens need to be
40
+ # as different as possible to minimize the impact
41
+ EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
42
+ SPECIAL_TOKENS = (
43
+ ENDOFTEXT,
44
+ IMSTART,
45
+ IMEND,
46
+ ) + EXTRAS
47
+ IMG_TOKEN_SPAN = 256
48
+
49
+
50
+ def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
51
+ with open(tiktoken_bpe_file, "rb") as f:
52
+ contents = f.read()
53
+ return {
54
+ base64.b64decode(token): int(rank)
55
+ for token, rank in (line.split() for line in contents.splitlines() if line)
56
+ }
57
+
58
+ def _list_find(
59
+ input_list: List[Any],
60
+ candidates: Tuple[Any],
61
+ start: int = 0,
62
+ ):
63
+ for i in range(start, len(input_list)):
64
+ if input_list[i] in candidates:
65
+ return i
66
+ return -1
67
+
68
+ def _replace_closed_tag(
69
+ input_tokens: List[Any],
70
+ start_tags: Union[Any, Tuple[Any]],
71
+ end_tags: Union[Any, Tuple[Any]],
72
+ inclusive_replace_func: Callable,
73
+ exclusive_replace_func: Callable = lambda x: x,
74
+ ):
75
+ if isinstance(start_tags, (str, int)):
76
+ start_tags = (start_tags,)
77
+ if isinstance(end_tags, (str, int)):
78
+ end_tags = (end_tags,)
79
+ assert len(start_tags) == len(end_tags)
80
+
81
+ output_tokens = []
82
+ end = 0
83
+ while True:
84
+ start = _list_find(input_tokens, start_tags, end)
85
+ if start == -1:
86
+ break
87
+ output_tokens.extend(exclusive_replace_func(input_tokens[end : start]))
88
+ tag_idx = start_tags.index(input_tokens[start])
89
+ end = _list_find(input_tokens, (end_tags[tag_idx],), start)
90
+ if end == -1:
91
+ raise ValueError("Unclosed image token")
92
+ output_tokens.extend(inclusive_replace_func(input_tokens[start : end + 1]))
93
+ end += 1
94
+ output_tokens.extend(exclusive_replace_func(input_tokens[end : ]))
95
+ return output_tokens
96
+
97
+ class QWenTokenizer(PreTrainedTokenizer):
98
+ """QWen tokenizer."""
99
+
100
+ vocab_files_names = VOCAB_FILES_NAMES
101
+
102
+ def __init__(
103
+ self,
104
+ vocab_file,
105
+ errors="replace",
106
+ image_start_tag='<img>',
107
+ image_end_tag='</img>',
108
+ image_pad_tag='<imgpad>',
109
+ ref_start_tag='<ref>',
110
+ ref_end_tag='</ref>',
111
+ box_start_tag='<box>',
112
+ box_end_tag='</box>',
113
+ quad_start_tag='<quad>',
114
+ quad_end_tag='</quad>',
115
+ **kwargs,
116
+ ):
117
+ super().__init__(**kwargs)
118
+ self.image_start_tag = image_start_tag
119
+ self.image_end_tag = image_end_tag
120
+ self.image_pad_tag = image_pad_tag
121
+ self.ref_start_tag = ref_start_tag
122
+ self.ref_end_tag = ref_end_tag
123
+ self.box_start_tag = box_start_tag
124
+ self.box_end_tag = box_end_tag
125
+ self.quad_start_tag = quad_start_tag
126
+ self.quad_end_tag = quad_end_tag
127
+ self.IMAGE_ST = (
128
+ ref_start_tag, ref_end_tag,
129
+ box_start_tag, box_end_tag,
130
+ quad_start_tag, quad_end_tag,
131
+ image_start_tag, image_end_tag,
132
+ image_pad_tag
133
+ )
134
+
135
+ self.errors = errors # how to handle errors in decoding
136
+
137
+ self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: dict[bytes, int]
138
+ self.special_tokens = {
139
+ token: index
140
+ for index, token in enumerate(
141
+ SPECIAL_TOKENS + self.IMAGE_ST, start=len(self.mergeable_ranks)
142
+ )
143
+ }
144
+ self.img_start_id = self.special_tokens[self.image_start_tag]
145
+ self.img_end_id = self.special_tokens[self.image_end_tag]
146
+ self.img_pad_id = self.special_tokens[self.image_pad_tag]
147
+ self.ref_start_id = self.special_tokens[self.ref_start_tag]
148
+ self.ref_end_id = self.special_tokens[self.ref_end_tag]
149
+ self.box_start_id = self.special_tokens[self.box_start_tag]
150
+ self.box_end_id = self.special_tokens[self.box_end_tag]
151
+ self.quad_start_id = self.special_tokens[self.quad_start_tag]
152
+ self.quad_end_id = self.special_tokens[self.quad_end_tag]
153
+
154
+ enc = tiktoken.Encoding(
155
+ "Qwen",
156
+ pat_str=PAT_STR,
157
+ mergeable_ranks=self.mergeable_ranks,
158
+ special_tokens=self.special_tokens,
159
+ )
160
+ assert (
161
+ len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
162
+ ), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
163
+
164
+ self.decoder = {
165
+ v: k for k, v in self.mergeable_ranks.items()
166
+ } # type: dict[int, bytes|str]
167
+ self.decoder.update({v: k for k, v in self.special_tokens.items()})
168
+
169
+ self.tokenizer = enc # type: tiktoken.Encoding
170
+
171
+ self.eod_id = self.tokenizer.eot_token
172
+ self.im_start_id = self.special_tokens[IMSTART]
173
+ self.im_end_id = self.special_tokens[IMEND]
174
+
175
+ def __getstate__(self):
176
+ # for pickle lovers
177
+ state = self.__dict__.copy()
178
+ del state['tokenizer']
179
+ return state
180
+
181
+ def __setstate__(self, state):
182
+ # tokenizer is not python native; don't pass it; rebuild it
183
+ self.__dict__.update(state)
184
+ enc = tiktoken.Encoding(
185
+ "Qwen",
186
+ pat_str=PAT_STR,
187
+ mergeable_ranks=self.mergeable_ranks,
188
+ special_tokens=self.special_tokens,
189
+ )
190
+ self.tokenizer = enc
191
+
192
+
193
+ def __len__(self) -> int:
194
+ return self.tokenizer.n_vocab
195
+
196
+ def get_vocab(self) -> Dict[bytes, int]:
197
+ return self.mergeable_ranks
198
+
199
+ def convert_tokens_to_ids(
200
+ self, tokens: Union[bytes, str, List[Union[bytes, str]]]
201
+ ) -> List[int]:
202
+ ids = []
203
+ if isinstance(tokens, (str, bytes)):
204
+ if tokens in self.special_tokens:
205
+ return self.special_tokens[tokens]
206
+ else:
207
+ return self.mergeable_ranks.get(tokens)
208
+ for token in tokens:
209
+ if token in self.special_tokens:
210
+ ids.append(self.special_tokens[token])
211
+ else:
212
+ ids.append(self.mergeable_ranks.get(token))
213
+ return ids
214
+
215
+ def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
216
+ if not special_tokens and new_tokens:
217
+ raise ValueError('Adding regular tokens is not supported')
218
+ for token in new_tokens:
219
+ surface_form = token.content if isinstance(token, AddedToken) else token
220
+ if surface_form not in SPECIAL_TOKENS + self.IMAGE_ST:
221
+ raise ValueError('Adding unknown special tokens is not supported')
222
+ return 0
223
+
224
+ def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
225
+ """
226
+ Save only the vocabulary of the tokenizer (vocabulary).
227
+
228
+ Returns:
229
+ `Tuple(str)`: Paths to the files saved.
230
+ """
231
+ file_path = os.path.join(save_directory, "qwen.tiktoken")
232
+ with open(file_path, "w", encoding="utf8") as w:
233
+ for k, v in self.mergeable_ranks.items():
234
+ line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
235
+ w.write(line)
236
+ return (file_path,)
237
+
238
+ def tokenize(
239
+ self,
240
+ text: str,
241
+ allowed_special: Union[Set, str] = "all",
242
+ disallowed_special: Union[Collection, str] = (),
243
+ **kwargs,
244
+ ) -> List[Union[bytes, str]]:
245
+ """
246
+ Converts a string in a sequence of tokens.
247
+
248
+ Args:
249
+ text (`str`):
250
+ The sequence to be encoded.
251
+ allowed_special (`Literal["all"]` or `set`):
252
+ The surface forms of the tokens to be encoded as special tokens in regular texts.
253
+ Default to "all".
254
+ disallowed_special (`Literal["all"]` or `Collection`):
255
+ The surface forms of the tokens that should not be in regular texts and trigger errors.
256
+ Default to an empty tuple.
257
+
258
+ kwargs (additional keyword arguments, *optional*):
259
+ Will be passed to the underlying model specific encode method.
260
+
261
+ Returns:
262
+ `List[bytes|str]`: The list of tokens.
263
+ """
264
+ tokens = []
265
+ text = unicodedata.normalize("NFC", text)
266
+
267
+ # this implementation takes a detour: text -> token id -> token surface forms
268
+ for t in self.tokenizer.encode(
269
+ text, allowed_special=allowed_special, disallowed_special=disallowed_special
270
+ ):
271
+ tokens.append(self.decoder[t])
272
+
273
+ def _encode_imgurl(img_tokens):
274
+ assert img_tokens[0] == self.image_start_tag and img_tokens[-1] == self.image_end_tag
275
+ img_tokens = img_tokens[1:-1]
276
+ img_url = b''.join(img_tokens)
277
+ out_img_tokens = list(map(self.decoder.get, img_url))
278
+ if len(out_img_tokens) > IMG_TOKEN_SPAN:
279
+ raise ValueError("The content in {}..{} is too long".format(
280
+ self.image_start_tag, self.image_end_tag))
281
+ out_img_tokens.extend([self.image_pad_tag] * (IMG_TOKEN_SPAN - len(out_img_tokens)))
282
+ out_img_tokens = [self.image_start_tag] + out_img_tokens + [self.image_end_tag]
283
+ return out_img_tokens
284
+
285
+ return _replace_closed_tag(tokens, self.image_start_tag, self.image_end_tag, _encode_imgurl)
286
+
287
+ def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
288
+ """
289
+ Converts a sequence of tokens in a single string.
290
+ """
291
+ text = ""
292
+ temp = b""
293
+ for t in tokens:
294
+ if isinstance(t, str):
295
+ if temp:
296
+ text += temp.decode("utf-8", errors=self.errors)
297
+ temp = b""
298
+ text += t
299
+ elif isinstance(t, bytes):
300
+ temp += t
301
+ else:
302
+ raise TypeError("token should only be of type types or str")
303
+ if temp:
304
+ text += temp.decode("utf-8", errors=self.errors)
305
+ return text
306
+
307
+ @property
308
+ def vocab_size(self):
309
+ return self.tokenizer.n_vocab
310
+
311
+ def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
312
+ """Converts an id to a token, special tokens included"""
313
+ if index in self.decoder:
314
+ return self.decoder[index]
315
+ raise ValueError("unknown ids")
316
+
317
+ def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
318
+ """Converts a token to an id using the vocab, special tokens included"""
319
+ if token in self.special_tokens:
320
+ return self.special_tokens[token]
321
+ if token in self.mergeable_ranks:
322
+ return self.mergeable_ranks[token]
323
+ raise ValueError("unknown token")
324
+
325
+ def _tokenize(self, text: str, **kwargs):
326
+ """
327
+ Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
328
+ vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
329
+
330
+ Do NOT take care of added tokens.
331
+ """
332
+ raise NotImplementedError
333
+
334
+ def _decode(
335
+ self,
336
+ token_ids: Union[int, List[int]],
337
+ skip_special_tokens: bool = False,
338
+ errors: str = None,
339
+ **kwargs,
340
+ ) -> str:
341
+ if isinstance(token_ids, int):
342
+ token_ids = [token_ids]
343
+
344
+ def _decode_imgurl(img_token_ids):
345
+ assert img_token_ids[0] == self.img_start_id and img_token_ids[-1] == self.img_end_id
346
+ img_token_ids = img_token_ids[1:-1]
347
+ img_token_ids = img_token_ids[ : img_token_ids.index(self.img_pad_id)]
348
+ img_url = bytes(img_token_ids).decode('utf-8')
349
+ return [self.img_start_id] + self.tokenizer.encode(img_url) + [self.img_end_id]
350
+
351
+ token_ids = _replace_closed_tag(token_ids, self.img_start_id, self.img_end_id, _decode_imgurl)
352
+
353
+ if skip_special_tokens:
354
+ token_ids = [i for i in token_ids if i < self.eod_id]
355
+ return self.tokenizer.decode(token_ids, errors=errors or self.errors)
356
+
357
+ def to_list_format(self, text: str):
358
+ text = unicodedata.normalize("NFC", text)
359
+ token_ids = self.tokenizer.encode(
360
+ text, allowed_special=set(self.IMAGE_ST + (ENDOFTEXT,)))
361
+
362
+ def _encode_vl_info(tokens):
363
+ if len(tokens) == 0:
364
+ return []
365
+ if tokens[0] == self.img_start_id and tokens[-1] == self.img_end_id:
366
+ key = 'image'
367
+ elif tokens[0] == self.ref_start_id and tokens[-1] == self.ref_end_id:
368
+ key = 'ref'
369
+ elif tokens[0] == self.box_start_id and tokens[-1] == self.box_end_id:
370
+ key = 'box'
371
+ elif tokens[0] == self.quad_start_id and tokens[-1] == self.quad_end_id:
372
+ key = 'quad'
373
+ else:
374
+ _tobytes = lambda x: x.encode('utf-8') if isinstance(x, str) else x
375
+ return [{'text': b''.join(map(_tobytes, map(self.decoder.get, tokens))).decode('utf-8')}]
376
+ _tobytes = lambda x: x.encode('utf-8') if isinstance(x, str) else x
377
+ val = b''.join(map(_tobytes, map(self.decoder.get, tokens[1:-1]))).decode('utf-8')
378
+ return [{key: val}]
379
+
380
+ return _replace_closed_tag(
381
+ token_ids,
382
+ (self.img_start_id, self.ref_start_id, self.box_start_id, self.quad_start_id),
383
+ (self.img_end_id, self.ref_end_id, self.box_end_id, self.quad_end_id),
384
+ _encode_vl_info,
385
+ _encode_vl_info,
386
+ )
387
+
388
+ def from_list_format(self, list_format: List[Dict]):
389
+ text = ''
390
+ num_images = 0
391
+ for ele in list_format:
392
+ if 'image' in ele:
393
+ num_images += 1
394
+ text += f'Picture {num_images}:'
395
+ text += self.image_start_tag + ele['image'] + self.image_end_tag
396
+ text += '\n'
397
+ elif 'text' in ele:
398
+ text += ele['text']
399
+ elif 'box' in ele:
400
+ if 'ref' in ele:
401
+ text += self.ref_start_tag + ele['ref'] + self.ref_end_tag
402
+ for box in ele['box']:
403
+ text += self.box_start_tag + '(%d,%d),(%d,%d)' % (box[0], box[1], box[2], box[3]) + self.box_end_tag
404
+ else:
405
+ raise ValueError("Unsupport element: " + str(ele))
406
+ return text
407
+
408
+ def _fetch_latest_picture(self, response, history):
409
+ if history is None:
410
+ history = []
411
+ _history = history + [(response, None)]
412
+ for q, r in _history[::-1]:
413
+ for ele in self.to_list_format(q)[::-1]:
414
+ if 'image' in ele:
415
+ return ele['image']
416
+ return None
417
+
418
+ def _fetch_all_box_with_ref(self, text):
419
+ list_format = self.to_list_format(text)
420
+ output = []
421
+ for i, ele in enumerate(list_format):
422
+ if 'box' in ele:
423
+ bbox = tuple(map(int, ele['box'].replace('(', '').replace(')', '').split(',')))
424
+ assert len(bbox) == 4
425
+ output.append({'box': bbox})
426
+ if i > 0 and 'ref' in list_format[i-1]:
427
+ output[-1]['ref'] = list_format[i-1]['ref'].strip()
428
+ return output
429
+
430
+ def draw_bbox_on_latest_picture(
431
+ self,
432
+ response,
433
+ history=None,
434
+ ) -> Optional[Image.Image]:
435
+ image = self._fetch_latest_picture(response, history)
436
+ if image is None:
437
+ return None
438
+ if image.startswith("http://") or image.startswith("https://"):
439
+ image = Image.open(requests.get(image, stream=True).raw).convert("RGB")
440
+ h, w = image.height, image.width
441
+ else:
442
+ image = np.asarray(Image.open(image).convert("RGB"))
443
+ h, w = image.shape[0], image.shape[1]
444
+ visualizer = Visualizer(image)
445
+
446
+ boxes = self._fetch_all_box_with_ref(response)
447
+ if not boxes:
448
+ return None
449
+ color = random.choice([_ for _ in mcolors.TABLEAU_COLORS.keys()]) # init color
450
+ for box in boxes:
451
+ if 'ref' in box: # random new color for new refexps
452
+ color = random.choice([_ for _ in mcolors.TABLEAU_COLORS.keys()])
453
+ x1, y1, x2, y2 = box['box']
454
+ x1, y1, x2, y2 = (int(x1 / 1000 * w), int(y1 / 1000 * h), int(x2 / 1000 * w), int(y2 / 1000 * h))
455
+ visualizer.draw_box((x1, y1, x2, y2), alpha=1, edge_color=color)
456
+ if 'ref' in box:
457
+ visualizer.draw_text(box['ref'], (x1, y1), color=color, horizontal_alignment="left")
458
+ return visualizer.output
459
+
460
+
461
+ import colorsys
462
+ import logging
463
+ import math
464
+ import numpy as np
465
+ import matplotlib as mpl
466
+ import matplotlib.colors as mplc
467
+ import matplotlib.figure as mplfigure
468
+ import torch
469
+ from matplotlib.backends.backend_agg import FigureCanvasAgg
470
+ from PIL import Image
471
+ import random
472
+
473
+ logger = logging.getLogger(__name__)
474
+
475
+
476
+ class VisImage:
477
+ def __init__(self, img, scale=1.0):
478
+ self.img = img
479
+ self.scale = scale
480
+ self.width, self.height = img.shape[1], img.shape[0]
481
+ self._setup_figure(img)
482
+
483
+ def _setup_figure(self, img):
484
+ fig = mplfigure.Figure(frameon=False)
485
+ self.dpi = fig.get_dpi()
486
+ # add a small 1e-2 to avoid precision lost due to matplotlib's truncation
487
+ # (https://github.com/matplotlib/matplotlib/issues/15363)
488
+ fig.set_size_inches(
489
+ (self.width * self.scale + 1e-2) / self.dpi,
490
+ (self.height * self.scale + 1e-2) / self.dpi,
491
+ )
492
+ self.canvas = FigureCanvasAgg(fig)
493
+ # self.canvas = mpl.backends.backend_cairo.FigureCanvasCairo(fig)
494
+ ax = fig.add_axes([0.0, 0.0, 1.0, 1.0])
495
+ ax.axis("off")
496
+ self.fig = fig
497
+ self.ax = ax
498
+ self.reset_image(img)
499
+
500
+ def reset_image(self, img):
501
+ img = img.astype("uint8")
502
+ self.ax.imshow(img, extent=(0, self.width, self.height, 0), interpolation="nearest")
503
+
504
+ def save(self, filepath):
505
+ self.fig.savefig(filepath)
506
+
507
+ def get_image(self):
508
+ canvas = self.canvas
509
+ s, (width, height) = canvas.print_to_buffer()
510
+
511
+ buffer = np.frombuffer(s, dtype="uint8")
512
+
513
+ img_rgba = buffer.reshape(height, width, 4)
514
+ rgb, alpha = np.split(img_rgba, [3], axis=2)
515
+ return rgb.astype("uint8")
516
+
517
+
518
+ class Visualizer:
519
+ def __init__(self, img_rgb, metadata=None, scale=1.0):
520
+ self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8)
521
+ self.font_path = FONT_PATH
522
+ self.output = VisImage(self.img, scale=scale)
523
+ self.cpu_device = torch.device("cpu")
524
+
525
+ # too small texts are useless, therefore clamp to 14
526
+ self._default_font_size = max(
527
+ np.sqrt(self.output.height * self.output.width) // 30, 15 // scale
528
+ )
529
+
530
+ def draw_text(
531
+ self,
532
+ text,
533
+ position,
534
+ *,
535
+ font_size=None,
536
+ color="g",
537
+ horizontal_alignment="center",
538
+ rotation=0,
539
+ ):
540
+ if not font_size:
541
+ font_size = self._default_font_size
542
+
543
+ # since the text background is dark, we don't want the text to be dark
544
+ color = np.maximum(list(mplc.to_rgb(color)), 0.2)
545
+ color[np.argmax(color)] = max(0.8, np.max(color))
546
+
547
+ x, y = position
548
+ self.output.ax.text(
549
+ x,
550
+ y,
551
+ text,
552
+ size=font_size * self.output.scale,
553
+ fontproperties=FontProperties(fname=self.font_path),
554
+ bbox={"facecolor": "black", "alpha": 0.8, "pad": 0.7, "edgecolor": "none"},
555
+ verticalalignment="top",
556
+ horizontalalignment=horizontal_alignment,
557
+ color=color,
558
+ zorder=10,
559
+ rotation=rotation,
560
+ )
561
+ return self.output
562
+
563
+ def draw_box(self, box_coord, alpha=0.5, edge_color="g", line_style="-"):
564
+
565
+ x0, y0, x1, y1 = box_coord
566
+ width = x1 - x0
567
+ height = y1 - y0
568
+
569
+ linewidth = max(self._default_font_size / 4, 1)
570
+
571
+ self.output.ax.add_patch(
572
+ mpl.patches.Rectangle(
573
+ (x0, y0),
574
+ width,
575
+ height,
576
+ fill=False,
577
+ edgecolor=edge_color,
578
+ linewidth=linewidth * self.output.scale,
579
+ alpha=alpha,
580
+ linestyle=line_style,
581
+ )
582
+ )
583
+ return self.output
584
+
585
+ def get_output(self):
586
+
587
+ return self.output
tokenizer_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoTokenizer": [
4
+ "tokenization_qwen.QWenTokenizer",
5
+ null
6
+ ]
7
+ },
8
+ "clean_up_tokenization_spaces": true,
9
+ "model_max_length": 2048,
10
+ "padding_side": "right",
11
+ "tokenizer_class": "QWenTokenizer"
12
+ }
visual.py ADDED
@@ -0,0 +1,429 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ from collections import OrderedDict
7
+ import math
8
+ import requests
9
+ from io import BytesIO
10
+ from functools import partial
11
+ from PIL import Image
12
+ from typing import Callable, Optional, Sequence, Tuple, List
13
+ import numpy as np
14
+ import torch
15
+ from torch import nn
16
+ from torch.nn import functional as F
17
+ from torch.nn.init import trunc_normal_
18
+ from torchvision import transforms
19
+ from torchvision.transforms import InterpolationMode
20
+
21
+
22
+ def get_abs_pos(abs_pos, tgt_size):
23
+ # abs_pos: L, C
24
+ # tgt_size: M
25
+ # return: M, C
26
+ src_size = int(math.sqrt(abs_pos.size(0)))
27
+ tgt_size = int(math.sqrt(tgt_size))
28
+ dtype = abs_pos.dtype
29
+
30
+ if src_size != tgt_size:
31
+ return F.interpolate(
32
+ abs_pos.float().reshape(1, src_size, src_size, -1).permute(0, 3, 1, 2),
33
+ size=(tgt_size, tgt_size),
34
+ mode="bicubic",
35
+ align_corners=False,
36
+ ).permute(0, 2, 3, 1).flatten(0, 2).to(dtype=dtype)
37
+ else:
38
+ return abs_pos
39
+
40
+ # https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
41
+ def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
42
+ """
43
+ grid_size: int of the grid height and width
44
+ return:
45
+ pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
46
+ """
47
+ grid_h = np.arange(grid_size, dtype=np.float32)
48
+ grid_w = np.arange(grid_size, dtype=np.float32)
49
+ grid = np.meshgrid(grid_w, grid_h) # here w goes first
50
+ grid = np.stack(grid, axis=0)
51
+
52
+ grid = grid.reshape([2, 1, grid_size, grid_size])
53
+ pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
54
+ if cls_token:
55
+ pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
56
+ return pos_embed
57
+
58
+
59
+ def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
60
+ assert embed_dim % 2 == 0
61
+
62
+ # use half of dimensions to encode grid_h
63
+ emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
64
+ emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
65
+
66
+ emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
67
+ return emb
68
+
69
+
70
+ def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
71
+ """
72
+ embed_dim: output dimension for each position
73
+ pos: a list of positions to be encoded: size (M,)
74
+ out: (M, D)
75
+ """
76
+ assert embed_dim % 2 == 0
77
+ omega = np.arange(embed_dim // 2, dtype=np.float32)
78
+ omega /= embed_dim / 2.
79
+ omega = 1. / 10000**omega # (D/2,)
80
+
81
+ pos = pos.reshape(-1) # (M,)
82
+ out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
83
+
84
+ emb_sin = np.sin(out) # (M, D/2)
85
+ emb_cos = np.cos(out) # (M, D/2)
86
+
87
+ emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
88
+ return emb
89
+
90
+
91
+ class Resampler(nn.Module):
92
+ """
93
+ A 2D perceiver-resampler network with one cross attention layers by
94
+ (grid_size**2) learnable queries and 2d sincos pos_emb
95
+ Outputs:
96
+ A tensor with the shape of (grid_size**2, embed_dim)
97
+ """
98
+ def __init__(
99
+ self,
100
+ grid_size,
101
+ embed_dim,
102
+ num_heads,
103
+ kv_dim=None,
104
+ norm_layer=nn.LayerNorm
105
+ ):
106
+ super().__init__()
107
+ self.num_queries = grid_size ** 2
108
+ self.embed_dim = embed_dim
109
+ self.num_heads = num_heads
110
+
111
+ self.pos_embed = nn.Parameter(
112
+ torch.from_numpy(get_2d_sincos_pos_embed(embed_dim, grid_size)).float()
113
+ ).requires_grad_(False)
114
+
115
+ self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim))
116
+ trunc_normal_(self.query, std=.02)
117
+
118
+ if kv_dim is not None and kv_dim != embed_dim:
119
+ self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False)
120
+ else:
121
+ self.kv_proj = nn.Identity()
122
+
123
+ self.attn = nn.MultiheadAttention(embed_dim, num_heads)
124
+ self.ln_q = norm_layer(embed_dim)
125
+ self.ln_kv = norm_layer(embed_dim)
126
+
127
+ self.apply(self._init_weights)
128
+
129
+ def _init_weights(self, m):
130
+ if isinstance(m, nn.Linear):
131
+ trunc_normal_(m.weight, std=.02)
132
+ if isinstance(m, nn.Linear) and m.bias is not None:
133
+ nn.init.constant_(m.bias, 0)
134
+ elif isinstance(m, nn.LayerNorm):
135
+ nn.init.constant_(m.bias, 0)
136
+ nn.init.constant_(m.weight, 1.0)
137
+
138
+ def forward(self, x, attn_mask=None):
139
+
140
+ pos_embed = get_abs_pos(self.pos_embed, x.size(1))
141
+
142
+ x = self.kv_proj(x)
143
+ x = self.ln_kv(x).permute(1, 0, 2)
144
+
145
+ N = x.shape[1]
146
+ q = self.ln_q(self.query)
147
+ out = self.attn(
148
+ self._repeat(q, N) + self.pos_embed.unsqueeze(1),
149
+ x + pos_embed.unsqueeze(1),
150
+ x,
151
+ attn_mask=attn_mask)[0]
152
+ return out.permute(1, 0, 2)
153
+
154
+ def _repeat(self, query, N: int):
155
+ return query.unsqueeze(1).repeat(1, N, 1)
156
+
157
+
158
+ class VisualAttention(nn.Module):
159
+ """self-attention layer class.
160
+
161
+ Self-attention layer takes input with size [s, b, h]
162
+ and returns output of the same size.
163
+ """
164
+
165
+ def __init__(self, embed_dim, num_heads,
166
+ bias=True, kdim=None, vdim=None):
167
+ super(VisualAttention, self).__init__()
168
+ self.embed_dim = embed_dim
169
+ self.kdim = kdim if kdim is not None else embed_dim
170
+ self.vdim = vdim if vdim is not None else embed_dim
171
+ self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
172
+
173
+ self.num_heads = num_heads
174
+
175
+ # Per attention head and per partition values.
176
+ assert embed_dim % num_heads == 0
177
+ self.hidden_size_per_attention_head = embed_dim // num_heads
178
+ self.num_attention_heads_per_partition = num_heads
179
+ self.hidden_size_per_partition = embed_dim
180
+
181
+ # Strided linear layer.
182
+ assert self._qkv_same_embed_dim, 'Only Support SelfAttention Currently'
183
+ self.in_proj = nn.Linear(embed_dim, 3 * embed_dim)
184
+ self.out_proj = nn.Linear(embed_dim, embed_dim)
185
+ self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
186
+
187
+ def forward(self, query, key, value, attn_mask = None):
188
+ # query/key/value: [sq, b, h]
189
+ sq, b, _ = query.size()
190
+
191
+ assert torch.allclose(query, key), 'Only Support Self-Attention Currently'
192
+ sk = sq
193
+ mixed_x_layer = self.in_proj(query)
194
+
195
+ # [sq, b, (np * 3 * hn)] --> [sq, b, np, 3 * hn]
196
+ new_tensor_shape = mixed_x_layer.size()[:-1] + \
197
+ (self.num_attention_heads_per_partition,
198
+ 3 * self.hidden_size_per_attention_head)
199
+ mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
200
+
201
+ # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
202
+ query_layer, key_layer, value_layer = mixed_x_layer.split(
203
+ self.hidden_size_per_attention_head, dim=-1)
204
+
205
+ # [sq, b, np, hn] -> [sq, b * np, hn]
206
+ query_layer = query_layer.view(sq,
207
+ b * self.num_attention_heads_per_partition,
208
+ self.hidden_size_per_attention_head).transpose(0, 1)
209
+ # [sk, b, np, hn] -> [sk, b * np, hn]
210
+ key_layer = key_layer.view(sk,
211
+ b * self.num_attention_heads_per_partition,
212
+ self.hidden_size_per_attention_head).transpose(0, 1)
213
+
214
+ q_scaled = query_layer / self.norm_factor
215
+ if attn_mask is not None:
216
+ attention_probs = torch.baddbmm(attn_mask, q_scaled, key_layer.transpose(-2, -1))
217
+ else:
218
+ attention_probs = torch.bmm(q_scaled, key_layer.transpose(-2, -1))
219
+ attention_probs = attention_probs.softmax(dim=-1)
220
+
221
+ value_layer = value_layer.view(sk,
222
+ b * self.num_attention_heads_per_partition,
223
+ self.hidden_size_per_attention_head).transpose(0, 1)
224
+
225
+ # matmul: [b * np, sq, hn]
226
+ context_layer = torch.bmm(attention_probs, value_layer)
227
+
228
+ # change view [b, np, sq, hn]
229
+ context_layer = context_layer.view(b,
230
+ self.num_attention_heads_per_partition,
231
+ sq, self.hidden_size_per_attention_head)
232
+
233
+ # [b, np, sq, hn] --> [sq, b, np, hn]
234
+ context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
235
+
236
+ # [sq, b, np, hn] --> [sq, b, hp]
237
+ new_context_layer_shape = context_layer.size()[:-2] + \
238
+ (self.hidden_size_per_partition,)
239
+ context_layer = context_layer.view(*new_context_layer_shape)
240
+
241
+ output = self.out_proj(context_layer)
242
+
243
+ return output
244
+
245
+
246
+ class VisualAttentionBlock(nn.Module):
247
+ def __init__(
248
+ self,
249
+ d_model: int,
250
+ n_head: int,
251
+ mlp_ratio: float = 4.0,
252
+ act_layer: Callable = nn.GELU,
253
+ norm_layer: Callable = nn.LayerNorm,
254
+ is_cross_attention: bool = False,
255
+ ):
256
+ super().__init__()
257
+
258
+ self.ln_1 = norm_layer(d_model)
259
+ if is_cross_attention:
260
+ self.ln_1_kv = norm_layer(d_model)
261
+
262
+ self.ln_2 = norm_layer(d_model)
263
+ mlp_width = int(d_model * mlp_ratio)
264
+ self.attn = VisualAttention(d_model, n_head)
265
+ self.mlp = nn.Sequential(OrderedDict([
266
+ ("c_fc", nn.Linear(d_model, mlp_width)),
267
+ ("gelu", act_layer()),
268
+ ("c_proj", nn.Linear(mlp_width, d_model))
269
+ ]))
270
+
271
+ def attention(
272
+ self,
273
+ q_x: torch.Tensor,
274
+ k_x: Optional[torch.Tensor] = None,
275
+ v_x: Optional[torch.Tensor] = None,
276
+ attn_mask: Optional[torch.Tensor] = None,
277
+ ):
278
+ k_x = k_x if k_x is not None else q_x
279
+ v_x = v_x if v_x is not None else q_x
280
+
281
+ attn_mask = attn_mask.to(q_x.dtype) if attn_mask is not None else None
282
+ return self.attn(q_x, k_x, v_x, attn_mask=attn_mask)
283
+
284
+ def forward(
285
+ self,
286
+ q_x: torch.Tensor,
287
+ k_x: Optional[torch.Tensor] = None,
288
+ v_x: Optional[torch.Tensor] = None,
289
+ attn_mask: Optional[torch.Tensor] = None,
290
+ ):
291
+ k_x = self.ln_1_kv(k_x) if hasattr(self, "ln_1_kv") and k_x is not None else None
292
+ v_x = self.ln_1_kv(v_x) if hasattr(self, "ln_1_kv") and v_x is not None else None
293
+
294
+ x = q_x + self.attention(q_x=self.ln_1(q_x), k_x=k_x, v_x=v_x, attn_mask=attn_mask)
295
+ x = x + self.mlp(self.ln_2(x))
296
+ return x
297
+
298
+
299
+ class TransformerBlock(nn.Module):
300
+ def __init__(
301
+ self,
302
+ width: int,
303
+ layers: int,
304
+ heads: int,
305
+ mlp_ratio: float = 4.0,
306
+ act_layer: Callable = nn.GELU,
307
+ norm_layer: Callable = nn.LayerNorm,
308
+ ):
309
+ super().__init__()
310
+ self.width = width
311
+ self.layers = layers
312
+
313
+ self.resblocks = nn.ModuleList([
314
+ VisualAttentionBlock(
315
+ width, heads, mlp_ratio, act_layer=act_layer, norm_layer=norm_layer)
316
+ for _ in range(layers)
317
+ ])
318
+
319
+ def get_cast_dtype(self) -> torch.dtype:
320
+ return self.resblocks[0].mlp.c_fc.weight.dtype
321
+
322
+ def get_cast_device(self) -> torch.device:
323
+ return self.resblocks[0].mlp.c_fc.weight.device
324
+
325
+ def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
326
+ for r in self.resblocks:
327
+ x = r(x, attn_mask=attn_mask)
328
+ return x
329
+
330
+
331
+ class VisionTransformer(nn.Module):
332
+
333
+ def __init__(
334
+ self,
335
+ image_size: int,
336
+ patch_size: int,
337
+ width: int,
338
+ layers: int,
339
+ heads: int,
340
+ mlp_ratio: float,
341
+ n_queries: int = 256,
342
+ output_dim: int = 512,
343
+ **kwargs
344
+ ):
345
+ super().__init__()
346
+ image_height, image_width = self.image_size = (image_size, image_size)
347
+ patch_height, patch_width = self.patch_size = (patch_size, patch_size)
348
+ self.grid_size = (image_height // patch_height, image_width // patch_width)
349
+ self.output_dim = output_dim
350
+
351
+ mean = (0.48145466, 0.4578275, 0.40821073)
352
+ std = (0.26862954, 0.26130258, 0.27577711)
353
+ self.image_transform = transforms.Compose([
354
+ transforms.Resize(
355
+ (image_size, image_size),
356
+ interpolation=InterpolationMode.BICUBIC
357
+ ),
358
+ transforms.ToTensor(),
359
+ transforms.Normalize(mean=mean, std=std),
360
+ ])
361
+
362
+ self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
363
+
364
+ # class embeddings and positional embeddings
365
+ scale = width ** -0.5
366
+ self.positional_embedding = nn.Parameter(scale * torch.randn(256, width))
367
+
368
+ norm_layer = partial(nn.LayerNorm, eps=1e-6)
369
+ act_layer = nn.GELU
370
+
371
+ self.ln_pre = norm_layer(width)
372
+ self.transformer = TransformerBlock(
373
+ width,
374
+ layers,
375
+ heads,
376
+ mlp_ratio,
377
+ act_layer=act_layer,
378
+ norm_layer=norm_layer,
379
+ )
380
+
381
+ self.attn_pool = Resampler(
382
+ grid_size=int(math.sqrt(n_queries)),
383
+ embed_dim=output_dim,
384
+ num_heads=output_dim // 128,
385
+ kv_dim=width,
386
+ norm_layer=norm_layer,
387
+ )
388
+ self.ln_post = norm_layer(output_dim)
389
+ self.proj = nn.Parameter((output_dim** -0.5) * torch.randn(output_dim, output_dim))
390
+
391
+ def forward(self, x: torch.Tensor):
392
+ x = x.to(
393
+ dtype=self.transformer.get_cast_dtype(),
394
+ device=self.transformer.get_cast_device(),
395
+ )
396
+ # to patches
397
+ x = self.conv1(x) # shape = [*, width, grid, grid]
398
+ x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
399
+ x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
400
+
401
+ x = x + get_abs_pos(self.positional_embedding, x.size(1))
402
+
403
+ x = self.ln_pre(x)
404
+
405
+ x = x.permute(1, 0, 2) # NLD -> LND
406
+ x = self.transformer(x)
407
+ x = x.permute(1, 0, 2) # LND -> NLD
408
+
409
+ x = self.attn_pool(x)
410
+ x = self.ln_post(x)
411
+ x = x @ self.proj
412
+
413
+ return x
414
+
415
+ def encode(self, image_paths: List[str]):
416
+ images = []
417
+ for image_path in image_paths:
418
+ try:
419
+ if image_path.startswith("http://") or image_path.startswith("https://"):
420
+ image = Image.open(requests.get(image_path, stream=True).raw)
421
+ else:
422
+ image = self.image_transform(Image.open(image_path).convert("RGB"))
423
+ except:
424
+ image = torch.zeros((3, 448, 448))
425
+ # pdb.set_trace()
426
+ images.append(image)
427
+ images = torch.stack(images, dim=0)
428
+
429
+ return self(images)