# train_and_save_model.py from sklearn.linear_model import LinearRegression from sklearn.datasets import make_regression import joblib # Generate example data (replace with your own dataset) X, y = make_regression(n_samples=100, n_features=3, noise=0.1, random_state=42) # Train the model model = LinearRegression() model.fit(X, y) # Save the model to a file joblib.dump(model, "linear_regression_model.joblib") print("Model saved as 'linear_regression_model.joblib'")