File size: 8,233 Bytes
1a6d7a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 옴므 교체용 가죽 벨트끈 벨트줄 허리띠 벨트 가죽 수동 자동용 22_수동벨트용 이태리가죽 3.3cm_카멜(42인치) 에스컴퍼니
- text: 여성 여자 패션 와이드 밴딩 벨트 패딩 코트 허리 허리띠 원피스 가디건 코디 패딩벨트 088_(SH30)_아이보리 {SH30-Ivory}
    스웰swell
- text: '[1 + 1]쭉쭉스판 늘어나는 밴딩 벨트 남여공용 캐쥬얼 데일리 군용 텍티컬 벨트 01. 늘어나는 벨트 1+1_05. 다크브라운_라이트브라운
    스토리몰2'
- text: '[로제이] 정장 캐주얼 가죽 더블 서스펜더 멜빵 NRMGSN011_BL 블랙_free '
- text: 모두샵 남자 가죽 청바지벨트 캐주얼벨트 허리띠 이니셜각인 7. 브라운 D107_한글(정자체)_보통길이(36까지착용가능) 모두샾
inference: true
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: metric
      value: 0.9649836541954232
      name: Metric
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 3 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                |
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0   | <ul><li>'고리 집게 가방 여행용 멜빵 클립 다용도 삼각버클 후크  옐로우몰'</li><li>'패션 여성서스펜더 스트랩 양복 출근룩 정장 코스튬 흰색 폭 2.5cm 120cm 맴매2'</li><li>'패션 여성서스펜더 스트랩 양복 출근룩 정장 코스튬 파란색 흰색 빨간색 줄무늬 폭2.5 120cm 맴매2'</li></ul>                                 |
| 2.0   | <ul><li>'Basic Leather Belt 네이비_100cm 만달문화여행사'</li><li>'다이에나롤랑 러블리 여자벨트 146276 은장 브라운 FCB0012CM_L 105 네잎클로버마켓'</li><li>'[갤러리아] 헤지스핸드백HJBE2F406W2브라운 스티치장식 소가죽 여성 벨트(타임월드)  한화갤러리아(주)'</li></ul>                         |
| 0.0   | <ul><li>'(아크테릭스)(공식판매처)(23SS) 컨베이어 벨트 32mm (AENSUX5577) BLACK_SM '</li><li>'[갤러리아] 헤지스핸드백 HJBE2F775BK_ 블랙 빅로고 버클 가죽 자동벨트(타임월드)  한화갤러리아(주)'</li><li>'닥스_핸드백 (선물포장/쇼핑백동봉) 블랙 체크배색 가죽 자동벨트 DBBE3E990BK  롯데백화점2관'</li></ul> |

## Evaluation

### Metrics
| Label   | Metric |
|:--------|:-------|
| **all** | 0.9650 |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_ac3")
# Run inference
preds = model("[로제이] 정장 캐주얼 가죽 더블 서스펜더 멜빵 NRMGSN011_BL 블랙_free ")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 3   | 9.6133 | 17  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0.0   | 50                    |
| 1.0   | 50                    |
| 2.0   | 50                    |

### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0417  | 1    | 0.394         | -               |
| 2.0833  | 50   | 0.0731        | -               |
| 4.1667  | 100  | 0.0           | -               |
| 6.25    | 150  | 0.0           | -               |
| 8.3333  | 200  | 0.0           | -               |
| 10.4167 | 250  | 0.0           | -               |
| 12.5    | 300  | 0.0           | -               |
| 14.5833 | 350  | 0.0           | -               |
| 16.6667 | 400  | 0.0           | -               |
| 18.75   | 450  | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->