File size: 8,233 Bytes
1a6d7a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 옴므 교체용 가죽 벨트끈 벨트줄 허리띠 벨트 가죽 수동 자동용 22_수동벨트용 이태리가죽 3.3cm_카멜(42인치) 에스컴퍼니
- text: 여성 여자 패션 와이드 밴딩 벨트 패딩 코트 허리 허리띠 원피스 가디건 코디 패딩벨트 088_(SH30)_아이보리 {SH30-Ivory}
스웰swell
- text: '[1 + 1]쭉쭉스판 늘어나는 밴딩 벨트 남여공용 캐쥬얼 데일리 군용 텍티컬 벨트 01. 늘어나는 벨트 1+1_05. 다크브라운_라이트브라운
스토리몰2'
- text: '[로제이] 정장 캐주얼 가죽 더블 서스펜더 멜빵 NRMGSN011_BL 블랙_free '
- text: 모두샵 남자 가죽 청바지벨트 캐주얼벨트 허리띠 이니셜각인 7. 브라운 D107_한글(정자체)_보통길이(36까지착용가능) 모두샾
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.9649836541954232
name: Metric
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 3 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0 | <ul><li>'고리 집게 가방 여행용 멜빵 클립 다용도 삼각버클 후크 옐로우몰'</li><li>'패션 여성서스펜더 스트랩 양복 출근룩 정장 코스튬 흰색 폭 2.5cm 120cm 맴매2'</li><li>'패션 여성서스펜더 스트랩 양복 출근룩 정장 코스튬 파란색 흰색 빨간색 줄무늬 폭2.5 120cm 맴매2'</li></ul> |
| 2.0 | <ul><li>'Basic Leather Belt 네이비_100cm 만달문화여행사'</li><li>'다이에나롤랑 러블리 여자벨트 146276 은장 브라운 FCB0012CM_L 105 네잎클로버마켓'</li><li>'[갤러리아] 헤지스핸드백HJBE2F406W2브라운 스티치장식 소가죽 여성 벨트(타임월드) 한화갤러리아(주)'</li></ul> |
| 0.0 | <ul><li>'(아크테릭스)(공식판매처)(23SS) 컨베이어 벨트 32mm (AENSUX5577) BLACK_SM '</li><li>'[갤러리아] 헤지스핸드백 HJBE2F775BK_ 블랙 빅로고 버클 가죽 자동벨트(타임월드) 한화갤러리아(주)'</li><li>'닥스_핸드백 (선물포장/쇼핑백동봉) 블랙 체크배색 가죽 자동벨트 DBBE3E990BK 롯데백화점2관'</li></ul> |
## Evaluation
### Metrics
| Label | Metric |
|:--------|:-------|
| **all** | 0.9650 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_ac3")
# Run inference
preds = model("[로제이] 정장 캐주얼 가죽 더블 서스펜더 멜빵 NRMGSN011_BL 블랙_free ")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 3 | 9.6133 | 17 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 50 |
| 1.0 | 50 |
| 2.0 | 50 |
### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0417 | 1 | 0.394 | - |
| 2.0833 | 50 | 0.0731 | - |
| 4.1667 | 100 | 0.0 | - |
| 6.25 | 150 | 0.0 | - |
| 8.3333 | 200 | 0.0 | - |
| 10.4167 | 250 | 0.0 | - |
| 12.5 | 300 | 0.0 | - |
| 14.5833 | 350 | 0.0 | - |
| 16.6667 | 400 | 0.0 | - |
| 18.75 | 450 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |