File size: 13,320 Bytes
05781f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 커버형 약통 물티슈박스 2개 위생소품 신생아 오염방지 보관함 출산/육아 > 물티슈 > 물티슈워머/물티슈캡
- text: 유한 세정 살균 일회용 물 티슈 3종 상품선택_시트러스불렌드 출산/육아 > 물티슈 > 휴대용
- text: '[비타토 탈부착 물티슈캡] 미니형 물티슈케이스 8컬러 택1 미니 체리핑크 출산/육아 > 물티슈 > 물티슈워머/물티슈캡'
- text: 네이쳐러브메레 건티슈 15매 출산/육아 > 물티슈 > 리필형
- text: 하트민 업소용물티슈 100T 600매 1매포장물티슈 두꺼운 업소 1회용 식당물티슈 지퍼백포장물티슈_70T 600매 출산/육아 > 물티슈
> 코인티슈/업소용
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: mini1013/master_domain
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.9978378378378379
name: Accuracy
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 7 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.0 | <ul><li>'BROWN 프리미엄 옐로우 물티슈 휴대 캡형 20매 출산/육아 > 물티슈 > 휴대용'</li><li>'쪼꼬미 휴대용 물티슈 30팩 미니형 소형 미니 여행용 쪼꼬미물티슈_90팩 출산/육아 > 물티슈 > 휴대용'</li><li>'자연속에 업소용 물티슈 64g(그린) x1 박스(400개) 1매물 음식점 물수건 휴대용 출산/육아 > 물티슈 > 휴대용'</li></ul> |
| 4.0 | <ul><li>'미니무지A 600매 개별포장 대용량 배달용 식당용 업소용 판촉 1회용 일회용 물티슈 출산/육아 > 물티슈 > 코인티슈/업소용'</li><li>'베지터블 압축 코인 티슈 300 코스트코 압축티슈 동전티슈 출산/육아 > 물티슈 > 코인티슈/업소용'</li><li>'하트민 130T 520매 일회용 식당물티슈 업소용 물수건 두툼한 식당용 고급 1회용물티슈 낱개 80g 800매 출산/육아 > 물티슈 > 코인티슈/업소용'</li></ul> |
| 3.0 | <ul><li>'달곰이 노블레스 아기물티슈 크로스엠보싱 72매x10팩 캡형 72매 10팩 캡형 출산/육아 > 물티슈 > 캡형'</li><li>'지크린텍 미엘 클래식 물티슈 캡형 100매 x 10매 캡형 100매 20매 출산/육아 > 물티슈 > 캡형'</li><li>'리꼬베이비 안전한 신생아 유아 대용량 캡형 10팩 20팩 도톰한 두꺼운 아기물티슈 모음전 11.시그니처 70매 10팩 캡 65g 출산/육아 > 물티슈 > 캡형'</li></ul> |
| 1.0 | <ul><li>'설랩수 온천 건티슈 전용 멸균온천수 떼르말 스프링 리필 스틱20ml 출산/육아 > 물티슈 > 리필형'</li><li>'우리집 건티슈 대용량 2.5kg 1500매 대량구매 두툼한원단 플레인 엠보싱 선택1.소프트 건티슈 2.5kg 플레인_1~2박스구매시 1박스가격 출산/육아 > 물티슈 > 리필형'</li><li>'베베솜 무표백 건티슈 순면 신생아건티슈 아기물티슈 리필형 퓨어_10매x15팩(150매) 출산/육아 > 물티슈 > 리필형'</li></ul> |
| 0.0 | <ul><li>'보람씨앤에치 붕어빵 패밀리 비데 물티슈 캡형 50매 10팩 출산/육아 > 물티슈 > 기능성물티슈 > 비데용'</li><li>'유한킴벌리 크리넥스 마이비데 클린케어 물티슈 캡형 46매 x 10팩 + 휴대용 10매 x 3팩 03.밸런스캡40매x5팩+밸런스휴대10매x8팩 출산/육아 > 물티슈 > 기능성물티슈 > 비데용'</li><li>'깨끗한나라 클린 손소독티슈 휴대용 10매 5팩 출산/육아 > 물티슈 > 기능성물티슈 > 손소독용'</li></ul> |
| 5.0 | <ul><li>'오리지널 플레인 휴대용 리필형 30매[12팩] 출산/육아 > 물티슈 > 혼합세트'</li><li>'신상품 물티슈 오리지널 휴대용 30매 출산/육아 > 물티슈 > 혼합세트'</li><li>'(물티슈 100매 모음) 그린터치 더플로라 하늘선물 캡형 리필 (최소 구매 10개) 하늘선물 물티슈 캡형 출산/육아 > 물티슈 > 혼합세트'</li></ul> |
| 2.0 | <ul><li>'아기 물티슈워머 물티슈보온 USB 네모 따뜻한 아기 물티슈워머 물티슈보온 USB 출산/육아 > 물티슈 > 물티슈워머/물티슈캡'</li><li>'베베숲 시그니처 위드블루 캡형 아기물티슈 저자극 70매 20개 70매 20개 출산/육아 > 물티슈 > 물티슈워머/물티슈캡'</li><li>'앙블랑 아기물티슈 민트 캡형 72매 x 10팩 출산/육아 > 물티슈 > 물티슈워머/물티슈캡'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.9978 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bc5")
# Run inference
preds = model("네이쳐러브메레 건티슈 15매 출산/육아 > 물티슈 > 리필형")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 7 | 15.1388 | 30 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 70 |
| 1.0 | 70 |
| 2.0 | 70 |
| 3.0 | 70 |
| 4.0 | 70 |
| 5.0 | 70 |
| 6.0 | 70 |
### Training Hyperparameters
- batch_size: (256, 256)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 50
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0104 | 1 | 0.4945 | - |
| 0.5208 | 50 | 0.4632 | - |
| 1.0417 | 100 | 0.2302 | - |
| 1.5625 | 150 | 0.0215 | - |
| 2.0833 | 200 | 0.0003 | - |
| 2.6042 | 250 | 0.0001 | - |
| 3.125 | 300 | 0.0001 | - |
| 3.6458 | 350 | 0.0 | - |
| 4.1667 | 400 | 0.0 | - |
| 4.6875 | 450 | 0.0 | - |
| 5.2083 | 500 | 0.0 | - |
| 5.7292 | 550 | 0.0 | - |
| 6.25 | 600 | 0.0 | - |
| 6.7708 | 650 | 0.0 | - |
| 7.2917 | 700 | 0.0 | - |
| 7.8125 | 750 | 0.0 | - |
| 8.3333 | 800 | 0.0 | - |
| 8.8542 | 850 | 0.0 | - |
| 9.375 | 900 | 0.0 | - |
| 9.8958 | 950 | 0.0 | - |
| 10.4167 | 1000 | 0.0 | - |
| 10.9375 | 1050 | 0.0 | - |
| 11.4583 | 1100 | 0.0 | - |
| 11.9792 | 1150 | 0.0 | - |
| 12.5 | 1200 | 0.0 | - |
| 13.0208 | 1250 | 0.0 | - |
| 13.5417 | 1300 | 0.0 | - |
| 14.0625 | 1350 | 0.0 | - |
| 14.5833 | 1400 | 0.0 | - |
| 15.1042 | 1450 | 0.0 | - |
| 15.625 | 1500 | 0.0 | - |
| 16.1458 | 1550 | 0.0 | - |
| 16.6667 | 1600 | 0.0 | - |
| 17.1875 | 1650 | 0.0 | - |
| 17.7083 | 1700 | 0.0 | - |
| 18.2292 | 1750 | 0.0 | - |
| 18.75 | 1800 | 0.0 | - |
| 19.2708 | 1850 | 0.0 | - |
| 19.7917 | 1900 | 0.0 | - |
| 20.3125 | 1950 | 0.0 | - |
| 20.8333 | 2000 | 0.0 | - |
| 21.3542 | 2050 | 0.0 | - |
| 21.875 | 2100 | 0.0 | - |
| 22.3958 | 2150 | 0.0 | - |
| 22.9167 | 2200 | 0.0 | - |
| 23.4375 | 2250 | 0.0 | - |
| 23.9583 | 2300 | 0.0 | - |
| 24.4792 | 2350 | 0.0 | - |
| 25.0 | 2400 | 0.0 | - |
| 25.5208 | 2450 | 0.0 | - |
| 26.0417 | 2500 | 0.0 | - |
| 26.5625 | 2550 | 0.0 | - |
| 27.0833 | 2600 | 0.0 | - |
| 27.6042 | 2650 | 0.0 | - |
| 28.125 | 2700 | 0.0 | - |
| 28.6458 | 2750 | 0.0 | - |
| 29.1667 | 2800 | 0.0 | - |
| 29.6875 | 2850 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |