--- base_model: mini1013/master_domain library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: '[VDAY] 포멜로 파라디 30ml 발렌타인 세트 코랄 LOREAL > DepartmentLotteOn > 아틀리에 코롱 > Branded > 아틀리에 코롱 LOREAL > DepartmentLotteOn > 아틀리에 코롱 > Branded > 아틀리에 코롱' - text: 톰포드 비터 피치 오 드 퍼퓸 50ml LotteOn > 뷰티 > 향수 > 여성향수 LotteOn > 뷰티 > 향수 > 여성향수 - text: 샹스 오 드 빠르펭 35ml ssg > 뷰티 > 향수 > 여성향수 ssg > 뷰티 > 향수 > 여성향수 - text: 미라클 EDP 100ml LotteOn > 뷰티 > 향수 > 여성향수 LotteOn > 뷰티 > 향수 > 여성향수 - text: 퍼플라벤다 플라워디퓨저 150ml_P050374133 투명병/아카시아 ssg > 뷰티 > 미용기기/소품 > 거울/용기/기타소품 ssg > 뷰티 > 미용기기/소품 > 거울/용기/기타소품 inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.5350966429298067 name: Accuracy --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 4 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 3 | | | 0 | | | 2 | | | 1 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.5351 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_bt_top11_test") # Run inference preds = model("샹스 오 드 빠르펭 35ml ssg > 뷰티 > 향수 > 여성향수 ssg > 뷰티 > 향수 > 여성향수") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 12 | 21.735 | 48 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 50 | | 1 | 50 | | 2 | 50 | | 3 | 50 | ### Training Hyperparameters - batch_size: (64, 64) - num_epochs: (30, 30) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 100 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0032 | 1 | 0.4649 | - | | 0.1597 | 50 | 0.4669 | - | | 0.3195 | 100 | 0.4469 | - | | 0.4792 | 150 | 0.4259 | - | | 0.6390 | 200 | 0.3685 | - | | 0.7987 | 250 | 0.2893 | - | | 0.9585 | 300 | 0.2223 | - | | 1.1182 | 350 | 0.1858 | - | | 1.2780 | 400 | 0.1766 | - | | 1.4377 | 450 | 0.1629 | - | | 1.5974 | 500 | 0.1571 | - | | 1.7572 | 550 | 0.1362 | - | | 1.9169 | 600 | 0.1208 | - | | 2.0767 | 650 | 0.1 | - | | 2.2364 | 700 | 0.0746 | - | | 2.3962 | 750 | 0.0699 | - | | 2.5559 | 800 | 0.0635 | - | | 2.7157 | 850 | 0.0464 | - | | 2.8754 | 900 | 0.0246 | - | | 3.0351 | 950 | 0.0195 | - | | 3.1949 | 1000 | 0.0063 | - | | 3.3546 | 1050 | 0.0004 | - | | 3.5144 | 1100 | 0.0003 | - | | 3.6741 | 1150 | 0.0001 | - | | 3.8339 | 1200 | 0.0002 | - | | 3.9936 | 1250 | 0.0007 | - | | 4.1534 | 1300 | 0.0006 | - | | 4.3131 | 1350 | 0.0001 | - | | 4.4728 | 1400 | 0.0002 | - | | 4.6326 | 1450 | 0.0001 | - | | 4.7923 | 1500 | 0.0 | - | | 4.9521 | 1550 | 0.0 | - | | 5.1118 | 1600 | 0.0 | - | | 5.2716 | 1650 | 0.0001 | - | | 5.4313 | 1700 | 0.0 | - | | 5.5911 | 1750 | 0.0001 | - | | 5.7508 | 1800 | 0.0002 | - | | 5.9105 | 1850 | 0.0 | - | | 6.0703 | 1900 | 0.0 | - | | 6.2300 | 1950 | 0.0 | - | | 6.3898 | 2000 | 0.0 | - | | 6.5495 | 2050 | 0.0 | - | | 6.7093 | 2100 | 0.0 | - | | 6.8690 | 2150 | 0.0 | - | | 7.0288 | 2200 | 0.0 | - | | 7.1885 | 2250 | 0.0002 | - | | 7.3482 | 2300 | 0.0 | - | | 7.5080 | 2350 | 0.0005 | - | | 7.6677 | 2400 | 0.0003 | - | | 7.8275 | 2450 | 0.0 | - | | 7.9872 | 2500 | 0.0 | - | | 8.1470 | 2550 | 0.0 | - | | 8.3067 | 2600 | 0.0 | - | | 8.4665 | 2650 | 0.0 | - | | 8.6262 | 2700 | 0.0001 | - | | 8.7859 | 2750 | 0.0 | - | | 8.9457 | 2800 | 0.0 | - | | 9.1054 | 2850 | 0.0005 | - | | 9.2652 | 2900 | 0.0 | - | | 9.4249 | 2950 | 0.0 | - | | 9.5847 | 3000 | 0.0 | - | | 9.7444 | 3050 | 0.0002 | - | | 9.9042 | 3100 | 0.0047 | - | | 10.0639 | 3150 | 0.0088 | - | | 10.2236 | 3200 | 0.0031 | - | | 10.3834 | 3250 | 0.0001 | - | | 10.5431 | 3300 | 0.0 | - | | 10.7029 | 3350 | 0.0 | - | | 10.8626 | 3400 | 0.0 | - | | 11.0224 | 3450 | 0.0 | - | | 11.1821 | 3500 | 0.0 | - | | 11.3419 | 3550 | 0.0 | - | | 11.5016 | 3600 | 0.0 | - | | 11.6613 | 3650 | 0.0001 | - | | 11.8211 | 3700 | 0.0002 | - | | 11.9808 | 3750 | 0.0025 | - | | 12.1406 | 3800 | 0.0074 | - | | 12.3003 | 3850 | 0.006 | - | | 12.4601 | 3900 | 0.005 | - | | 12.6198 | 3950 | 0.0006 | - | | 12.7796 | 4000 | 0.0 | - | | 12.9393 | 4050 | 0.0 | - | | 13.0990 | 4100 | 0.0 | - | | 13.2588 | 4150 | 0.0 | - | | 13.4185 | 4200 | 0.0004 | - | | 13.5783 | 4250 | 0.0 | - | | 13.7380 | 4300 | 0.0 | - | | 13.8978 | 4350 | 0.0 | - | | 14.0575 | 4400 | 0.0 | - | | 14.2173 | 4450 | 0.0 | - | | 14.3770 | 4500 | 0.0 | - | | 14.5367 | 4550 | 0.0 | - | | 14.6965 | 4600 | 0.0 | - | | 14.8562 | 4650 | 0.0 | - | | 15.0160 | 4700 | 0.0 | - | | 15.1757 | 4750 | 0.0 | - | | 15.3355 | 4800 | 0.0 | - | | 15.4952 | 4850 | 0.0 | - | | 15.6550 | 4900 | 0.0 | - | | 15.8147 | 4950 | 0.0 | - | | 15.9744 | 5000 | 0.0 | - | | 16.1342 | 5050 | 0.0 | - | | 16.2939 | 5100 | 0.0 | - | | 16.4537 | 5150 | 0.0 | - | | 16.6134 | 5200 | 0.0 | - | | 16.7732 | 5250 | 0.0 | - | | 16.9329 | 5300 | 0.0 | - | | 17.0927 | 5350 | 0.0 | - | | 17.2524 | 5400 | 0.0 | - | | 17.4121 | 5450 | 0.0 | - | | 17.5719 | 5500 | 0.0 | - | | 17.7316 | 5550 | 0.0 | - | | 17.8914 | 5600 | 0.0002 | - | | 18.0511 | 5650 | 0.0 | - | | 18.2109 | 5700 | 0.0 | - | | 18.3706 | 5750 | 0.0 | - | | 18.5304 | 5800 | 0.0 | - | | 18.6901 | 5850 | 0.0 | - | | 18.8498 | 5900 | 0.0 | - | | 19.0096 | 5950 | 0.0 | - | | 19.1693 | 6000 | 0.0 | - | | 19.3291 | 6050 | 0.0 | - | | 19.4888 | 6100 | 0.0 | - | | 19.6486 | 6150 | 0.0 | - | | 19.8083 | 6200 | 0.0 | - | | 19.9681 | 6250 | 0.0 | - | | 20.1278 | 6300 | 0.0 | - | | 20.2875 | 6350 | 0.0 | - | | 20.4473 | 6400 | 0.0 | - | | 20.6070 | 6450 | 0.0 | - | | 20.7668 | 6500 | 0.0 | - | | 20.9265 | 6550 | 0.0 | - | | 21.0863 | 6600 | 0.0 | - | | 21.2460 | 6650 | 0.0 | - | | 21.4058 | 6700 | 0.0 | - | | 21.5655 | 6750 | 0.0 | - | | 21.7252 | 6800 | 0.0 | - | | 21.8850 | 6850 | 0.0 | - | | 22.0447 | 6900 | 0.0 | - | | 22.2045 | 6950 | 0.0 | - | | 22.3642 | 7000 | 0.0 | - | | 22.5240 | 7050 | 0.0 | - | | 22.6837 | 7100 | 0.0 | - | | 22.8435 | 7150 | 0.0 | - | | 23.0032 | 7200 | 0.0 | - | | 23.1629 | 7250 | 0.0 | - | | 23.3227 | 7300 | 0.0 | - | | 23.4824 | 7350 | 0.0 | - | | 23.6422 | 7400 | 0.0 | - | | 23.8019 | 7450 | 0.0 | - | | 23.9617 | 7500 | 0.0 | - | | 24.1214 | 7550 | 0.0 | - | | 24.2812 | 7600 | 0.0 | - | | 24.4409 | 7650 | 0.0 | - | | 24.6006 | 7700 | 0.0 | - | | 24.7604 | 7750 | 0.0 | - | | 24.9201 | 7800 | 0.0 | - | | 25.0799 | 7850 | 0.0 | - | | 25.2396 | 7900 | 0.0 | - | | 25.3994 | 7950 | 0.0 | - | | 25.5591 | 8000 | 0.0 | - | | 25.7188 | 8050 | 0.0 | - | | 25.8786 | 8100 | 0.0 | - | | 26.0383 | 8150 | 0.0 | - | | 26.1981 | 8200 | 0.0 | - | | 26.3578 | 8250 | 0.0 | - | | 26.5176 | 8300 | 0.0 | - | | 26.6773 | 8350 | 0.0 | - | | 26.8371 | 8400 | 0.0 | - | | 26.9968 | 8450 | 0.0 | - | | 27.1565 | 8500 | 0.0 | - | | 27.3163 | 8550 | 0.0 | - | | 27.4760 | 8600 | 0.0 | - | | 27.6358 | 8650 | 0.0 | - | | 27.7955 | 8700 | 0.0 | - | | 27.9553 | 8750 | 0.0 | - | | 28.1150 | 8800 | 0.0 | - | | 28.2748 | 8850 | 0.0 | - | | 28.4345 | 8900 | 0.0 | - | | 28.5942 | 8950 | 0.0 | - | | 28.7540 | 9000 | 0.0 | - | | 28.9137 | 9050 | 0.0 | - | | 29.0735 | 9100 | 0.0 | - | | 29.2332 | 9150 | 0.0 | - | | 29.3930 | 9200 | 0.0 | - | | 29.5527 | 9250 | 0.0 | - | | 29.7125 | 9300 | 0.0 | - | | 29.8722 | 9350 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.3.1 - Transformers: 4.44.2 - PyTorch: 2.2.0a0+81ea7a4 - Datasets: 3.2.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```