File size: 22,069 Bytes
1223136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: '[라네즈] [체리 블러썸] 워터슬리핑마스크 EX 70ml 상세 설명 참조 (#M)쿠팡 홈>뷰티>스킨케어>마스크/팩>슬리핑팩 Coupang
    > 뷰티 > 스킨케어 > 마스크/팩 > 슬리핑팩'
- text: 메디힐 티트리 케어솔루션 에센셜 마스크 이엑스  LotteOn > 뷰티 > 마스크/팩 > 마스크팩 LotteOn > 뷰티 > 마스크/팩
    > 마스크팩
- text: 이니스프리 블랙티 유스 인핸싱 앰플 마스크 28ml 1개입 × 5 LotteOn > 뷰티 > 스킨케어 > 마스크/팩 > 마스크팩 LotteOn
    > 뷰티 > 스킨케어 > 마스크/팩 > 마스크팩
- text: 메디힐 마스크팩 티트리 수분 보습 진정 트러블 30. 메디힐 M.E.N 타임톡스_[1장] 홈>메디힐;홈>스킨케어>마스크팩;(#M)홈>화장품/미용>마스크/팩>마스크시트
    Naverstore > 화장품/미용 > 마스크/팩 > 마스크시트
- text: 이니스프리 블랙티 유스 인핸싱 앰플 마스크 28ml 1개입 × 5 LotteOn > 뷰티 > 스킨케어 > 스킨/토너 LotteOn
    > 뷰티 > 스킨케어 > 스킨/토너
inference: true
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.5683229813664596
      name: Accuracy
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 4 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3     | <ul><li>'[묶음할인~25%+T11%]에뛰드 타임어택 ~60% 전품목 빅세일/호랑이의 해 무직타이거 콜라보 런칭 50.패치(1)_매끈반짝3단코팩5개_650000010398 쇼킹딜 홈>뷰티>선케어/메이크업>아이메이크업;11st>메이크업>아이메이크업>아이섀도우;11st>뷰티>선케어/메이크업>아이메이크업;11st Hour Event > 패션/뷰티 > 뷰티 > 선케어/메이크업 > 아이메이크업 11st Hour Event > 패션/뷰티 > 뷰티 > 선케어/메이크업 > 아이메이크업'</li><li>'차앤박 안티포어 블랙헤드 클리어 키트 스트립  (#M)홈>화장품/미용>마스크/팩>코팩 Naverstore > 화장품/미용 > 마스크/팩 > 코팩'</li><li>'[차앤박] CNP 안티포어 블랙헤드 클리어 키트 스트립 3세트(3회분)  (#M)위메프 > 뷰티 > 스킨케어 > 팩/마스크 > 코팩 위메프 > 뷰티 > 스킨케어 > 팩/마스크 > 코팩'</li></ul>                                                                                                                    |
| 0     | <ul><li>'[10%+15%]한스킨 6월 클리어런스 클렌징오일/토너패드/에센스/블랙헤드/마스크~81%OF 블레미쉬 커버 컨실러_브라이트 [GH990355] 쇼킹딜 홈>뷰티>선케어/메이크업>페이스메이크업;11st>뷰티>선케어/메이크업>페이스메이크업;11st>메이크업>페이스메이크업>BB크림;11st > 뷰티 > 메이크업 > 페이스메이크업 11st Hour Event > 패션/뷰티 > 뷰티 > 선케어/메이크업 > 페이스메이크업'</li><li>'네이처리퍼블릭 [네이처리퍼블릭][1+1]수딩 앤 모이스처 알로에베라 수딩젤 마스크시트 단일옵션 × 선택완료 쿠팡 홈>뷰티>스킨케어>마스크/팩>코팩/기타패치>기타패치;Coupang > 뷰티 > 로드샵 > 스킨케어 > 마스크/팩 > 코팩/기타패치 > 기타패치;(#M)쿠팡 홈>뷰티>스킨케어>마스크/팩>패치/코팩>기타패치 Coupang > 뷰티 > 스킨케어 > 마스크/팩 > 패치/코팩 > 기타패치'</li><li>'이니스프리 블랙티 유스 인핸싱 앰플 마스크 28ml 1개입 × 5개 LotteOn > 뷰티 > 스킨케어 > 마스크/팩 > 마스크팩 LotteOn > 뷰티 > 스킨케어 > 마스크/팩 > 마스크팩'</li></ul> |
| 2     | <ul><li>'[쿠폰30%+스토어10%]에뛰드 ~64% 21년 신제품 앵콜전(플레이컬러아이즈/그림자쉐딩/픽싱틴트/순정) 58.AC 클린업_핑크마스크_111080503 쇼킹딜 홈>뷰티>스킨케어>크림;쇼킹딜 홈>뷰티>스킨케어>스킨/로션;11st>스킨케어>스킨/토너>스킨/토너;11st>메이크업>아이메이크업>아이섀도우;쇼킹딜 홈>뷰티>선케어/메이크업>아이메이크업;11st>뷰티>선케어/메이크업>아이메이크업;11st > timedeal 11st Hour Event > 패션/뷰티 > 뷰티 > 선케어/메이크업 > 아이메이크업'</li><li>'마스크 오브 매그너민티 315g 파워 마스크  (#M)뷰티>헤어/바디/미용기기>헤어케어>기획세트 CJmall > 뷰티 > 헤어/바디/미용기기 > 헤어스타일링 > 왁스/스프레이'</li><li>'[말썽피부케어추천] 쑥뜸팩+쑥카밍젤  (#M)위메프 > 뷰티 > 클렌징/필링 > 필링젤/스크럽 > 필링젤/스크럽 위메프 > 뷰티 > 클렌징/필링 > 필링젤/스크럽 > 필링젤/스크럽'</li></ul>                                                                                |
| 1     | <ul><li>'티르티르 물광 콜라겐 生생크림 버블팩 물광마스크 노워시 80ml   당일출고 티르티르콜라겐80ml (#M)홈>화장품/미용>스킨케어>크림 Naverstore > 화장품/미용 > 스킨케어 > 크림'</li><li>"달바 모델 한혜진's pick 화이트트러플 세럼 7통+아이크림1통 단일상품 TV쇼핑>TV쇼핑 화장품/이미용>화장품/향수>기초스킨케어;(#M)TV상품>TV쇼핑 화장품/이미용>화장품/향수>기초스킨케어 CJmall > 뷰티 > 화장품/향수 > 더모코스메틱 > 에센스/세럼/오일"</li><li>'시슬리 벨벳 슬리핑 마스크  LotteOn > 뷰티 > 남성화장품 > 남성화장품세트 LotteOn > 뷰티 > 남성화장품 > 남성화장품세트'</li></ul>                                                                                                                                                                                                                              |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.5683   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bt_top3_test")
# Run inference
preds = model("메디힐 티트리 케어솔루션 에센셜 마스크 이엑스  LotteOn > 뷰티 > 마스크/팩 > 마스크팩 LotteOn > 뷰티 > 마스크/팩 > 마스크팩")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 12  | 22.655 | 91  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0     | 50                    |
| 1     | 50                    |
| 2     | 50                    |
| 3     | 50                    |

### Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 100
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0032  | 1    | 0.478         | -               |
| 0.1597  | 50   | 0.4392        | -               |
| 0.3195  | 100  | 0.4128        | -               |
| 0.4792  | 150  | 0.3767        | -               |
| 0.6390  | 200  | 0.3406        | -               |
| 0.7987  | 250  | 0.2889        | -               |
| 0.9585  | 300  | 0.2482        | -               |
| 1.1182  | 350  | 0.2336        | -               |
| 1.2780  | 400  | 0.1948        | -               |
| 1.4377  | 450  | 0.1284        | -               |
| 1.5974  | 500  | 0.0958        | -               |
| 1.7572  | 550  | 0.0893        | -               |
| 1.9169  | 600  | 0.0788        | -               |
| 2.0767  | 650  | 0.0706        | -               |
| 2.2364  | 700  | 0.058         | -               |
| 2.3962  | 750  | 0.0476        | -               |
| 2.5559  | 800  | 0.0406        | -               |
| 2.7157  | 850  | 0.0327        | -               |
| 2.8754  | 900  | 0.0198        | -               |
| 3.0351  | 950  | 0.0183        | -               |
| 3.1949  | 1000 | 0.0131        | -               |
| 3.3546  | 1050 | 0.0093        | -               |
| 3.5144  | 1100 | 0.005         | -               |
| 3.6741  | 1150 | 0.0004        | -               |
| 3.8339  | 1200 | 0.0001        | -               |
| 3.9936  | 1250 | 0.0001        | -               |
| 4.1534  | 1300 | 0.0           | -               |
| 4.3131  | 1350 | 0.0001        | -               |
| 4.4728  | 1400 | 0.0           | -               |
| 4.6326  | 1450 | 0.0           | -               |
| 4.7923  | 1500 | 0.0           | -               |
| 4.9521  | 1550 | 0.0           | -               |
| 5.1118  | 1600 | 0.0           | -               |
| 5.2716  | 1650 | 0.0006        | -               |
| 5.4313  | 1700 | 0.0001        | -               |
| 5.5911  | 1750 | 0.0           | -               |
| 5.7508  | 1800 | 0.0           | -               |
| 5.9105  | 1850 | 0.0           | -               |
| 6.0703  | 1900 | 0.0           | -               |
| 6.2300  | 1950 | 0.0           | -               |
| 6.3898  | 2000 | 0.0           | -               |
| 6.5495  | 2050 | 0.0           | -               |
| 6.7093  | 2100 | 0.0           | -               |
| 6.8690  | 2150 | 0.0           | -               |
| 7.0288  | 2200 | 0.0           | -               |
| 7.1885  | 2250 | 0.0           | -               |
| 7.3482  | 2300 | 0.0           | -               |
| 7.5080  | 2350 | 0.0           | -               |
| 7.6677  | 2400 | 0.0           | -               |
| 7.8275  | 2450 | 0.0           | -               |
| 7.9872  | 2500 | 0.0           | -               |
| 8.1470  | 2550 | 0.0           | -               |
| 8.3067  | 2600 | 0.0002        | -               |
| 8.4665  | 2650 | 0.0           | -               |
| 8.6262  | 2700 | 0.0           | -               |
| 8.7859  | 2750 | 0.0001        | -               |
| 8.9457  | 2800 | 0.0           | -               |
| 9.1054  | 2850 | 0.0           | -               |
| 9.2652  | 2900 | 0.0           | -               |
| 9.4249  | 2950 | 0.0002        | -               |
| 9.5847  | 3000 | 0.0096        | -               |
| 9.7444  | 3050 | 0.0007        | -               |
| 9.9042  | 3100 | 0.0006        | -               |
| 10.0639 | 3150 | 0.0005        | -               |
| 10.2236 | 3200 | 0.0001        | -               |
| 10.3834 | 3250 | 0.0018        | -               |
| 10.5431 | 3300 | 0.0003        | -               |
| 10.7029 | 3350 | 0.0003        | -               |
| 10.8626 | 3400 | 0.0           | -               |
| 11.0224 | 3450 | 0.0016        | -               |
| 11.1821 | 3500 | 0.0058        | -               |
| 11.3419 | 3550 | 0.0055        | -               |
| 11.5016 | 3600 | 0.005         | -               |
| 11.6613 | 3650 | 0.0062        | -               |
| 11.8211 | 3700 | 0.0017        | -               |
| 11.9808 | 3750 | 0.0002        | -               |
| 12.1406 | 3800 | 0.0001        | -               |
| 12.3003 | 3850 | 0.0           | -               |
| 12.4601 | 3900 | 0.0           | -               |
| 12.6198 | 3950 | 0.0           | -               |
| 12.7796 | 4000 | 0.0           | -               |
| 12.9393 | 4050 | 0.0           | -               |
| 13.0990 | 4100 | 0.0           | -               |
| 13.2588 | 4150 | 0.0           | -               |
| 13.4185 | 4200 | 0.0           | -               |
| 13.5783 | 4250 | 0.0           | -               |
| 13.7380 | 4300 | 0.0           | -               |
| 13.8978 | 4350 | 0.0           | -               |
| 14.0575 | 4400 | 0.0           | -               |
| 14.2173 | 4450 | 0.0           | -               |
| 14.3770 | 4500 | 0.0           | -               |
| 14.5367 | 4550 | 0.0           | -               |
| 14.6965 | 4600 | 0.0           | -               |
| 14.8562 | 4650 | 0.0           | -               |
| 15.0160 | 4700 | 0.0           | -               |
| 15.1757 | 4750 | 0.0           | -               |
| 15.3355 | 4800 | 0.0           | -               |
| 15.4952 | 4850 | 0.0           | -               |
| 15.6550 | 4900 | 0.0           | -               |
| 15.8147 | 4950 | 0.0           | -               |
| 15.9744 | 5000 | 0.0           | -               |
| 16.1342 | 5050 | 0.0           | -               |
| 16.2939 | 5100 | 0.0           | -               |
| 16.4537 | 5150 | 0.0           | -               |
| 16.6134 | 5200 | 0.0           | -               |
| 16.7732 | 5250 | 0.0           | -               |
| 16.9329 | 5300 | 0.0           | -               |
| 17.0927 | 5350 | 0.0           | -               |
| 17.2524 | 5400 | 0.0           | -               |
| 17.4121 | 5450 | 0.0           | -               |
| 17.5719 | 5500 | 0.0           | -               |
| 17.7316 | 5550 | 0.0           | -               |
| 17.8914 | 5600 | 0.0           | -               |
| 18.0511 | 5650 | 0.0           | -               |
| 18.2109 | 5700 | 0.0           | -               |
| 18.3706 | 5750 | 0.0           | -               |
| 18.5304 | 5800 | 0.0           | -               |
| 18.6901 | 5850 | 0.0           | -               |
| 18.8498 | 5900 | 0.0           | -               |
| 19.0096 | 5950 | 0.0           | -               |
| 19.1693 | 6000 | 0.0           | -               |
| 19.3291 | 6050 | 0.0           | -               |
| 19.4888 | 6100 | 0.0           | -               |
| 19.6486 | 6150 | 0.0           | -               |
| 19.8083 | 6200 | 0.0           | -               |
| 19.9681 | 6250 | 0.0           | -               |
| 20.1278 | 6300 | 0.0           | -               |
| 20.2875 | 6350 | 0.0           | -               |
| 20.4473 | 6400 | 0.0           | -               |
| 20.6070 | 6450 | 0.0           | -               |
| 20.7668 | 6500 | 0.0           | -               |
| 20.9265 | 6550 | 0.0           | -               |
| 21.0863 | 6600 | 0.0           | -               |
| 21.2460 | 6650 | 0.0           | -               |
| 21.4058 | 6700 | 0.0           | -               |
| 21.5655 | 6750 | 0.0           | -               |
| 21.7252 | 6800 | 0.0           | -               |
| 21.8850 | 6850 | 0.0           | -               |
| 22.0447 | 6900 | 0.0           | -               |
| 22.2045 | 6950 | 0.0           | -               |
| 22.3642 | 7000 | 0.0           | -               |
| 22.5240 | 7050 | 0.0           | -               |
| 22.6837 | 7100 | 0.0           | -               |
| 22.8435 | 7150 | 0.0           | -               |
| 23.0032 | 7200 | 0.0           | -               |
| 23.1629 | 7250 | 0.0           | -               |
| 23.3227 | 7300 | 0.0           | -               |
| 23.4824 | 7350 | 0.0           | -               |
| 23.6422 | 7400 | 0.0           | -               |
| 23.8019 | 7450 | 0.0           | -               |
| 23.9617 | 7500 | 0.0           | -               |
| 24.1214 | 7550 | 0.0           | -               |
| 24.2812 | 7600 | 0.0           | -               |
| 24.4409 | 7650 | 0.0           | -               |
| 24.6006 | 7700 | 0.0           | -               |
| 24.7604 | 7750 | 0.0           | -               |
| 24.9201 | 7800 | 0.0           | -               |
| 25.0799 | 7850 | 0.0           | -               |
| 25.2396 | 7900 | 0.0           | -               |
| 25.3994 | 7950 | 0.0           | -               |
| 25.5591 | 8000 | 0.0           | -               |
| 25.7188 | 8050 | 0.0           | -               |
| 25.8786 | 8100 | 0.0           | -               |
| 26.0383 | 8150 | 0.0           | -               |
| 26.1981 | 8200 | 0.0           | -               |
| 26.3578 | 8250 | 0.0           | -               |
| 26.5176 | 8300 | 0.0           | -               |
| 26.6773 | 8350 | 0.0           | -               |
| 26.8371 | 8400 | 0.0           | -               |
| 26.9968 | 8450 | 0.0           | -               |
| 27.1565 | 8500 | 0.0           | -               |
| 27.3163 | 8550 | 0.0           | -               |
| 27.4760 | 8600 | 0.0           | -               |
| 27.6358 | 8650 | 0.0           | -               |
| 27.7955 | 8700 | 0.0           | -               |
| 27.9553 | 8750 | 0.0           | -               |
| 28.1150 | 8800 | 0.0           | -               |
| 28.2748 | 8850 | 0.0           | -               |
| 28.4345 | 8900 | 0.0           | -               |
| 28.5942 | 8950 | 0.0           | -               |
| 28.7540 | 9000 | 0.0           | -               |
| 28.9137 | 9050 | 0.0           | -               |
| 29.0735 | 9100 | 0.0           | -               |
| 29.2332 | 9150 | 0.0           | -               |
| 29.3930 | 9200 | 0.0           | -               |
| 29.5527 | 9250 | 0.0           | -               |
| 29.7125 | 9300 | 0.0           | -               |
| 29.8722 | 9350 | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->