File size: 22,069 Bytes
1223136 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: '[라네즈] [체리 블러썸] 워터슬리핑마스크 EX 70ml 상세 설명 참조 (#M)쿠팡 홈>뷰티>스킨케어>마스크/팩>슬리핑팩 Coupang
> 뷰티 > 스킨케어 > 마스크/팩 > 슬리핑팩'
- text: 메디힐 티트리 케어솔루션 에센셜 마스크 이엑스 LotteOn > 뷰티 > 마스크/팩 > 마스크팩 LotteOn > 뷰티 > 마스크/팩
> 마스크팩
- text: 이니스프리 블랙티 유스 인핸싱 앰플 마스크 28ml 1개입 × 5개 LotteOn > 뷰티 > 스킨케어 > 마스크/팩 > 마스크팩 LotteOn
> 뷰티 > 스킨케어 > 마스크/팩 > 마스크팩
- text: 메디힐 마스크팩 티트리 수분 보습 진정 트러블 30. 메디힐 M.E.N 타임톡스_[1장] 홈>메디힐;홈>스킨케어>마스크팩;(#M)홈>화장품/미용>마스크/팩>마스크시트
Naverstore > 화장품/미용 > 마스크/팩 > 마스크시트
- text: 이니스프리 블랙티 유스 인핸싱 앰플 마스크 28ml 1개입 × 5개 LotteOn > 뷰티 > 스킨케어 > 스킨/토너 LotteOn
> 뷰티 > 스킨케어 > 스킨/토너
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.5683229813664596
name: Accuracy
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 4 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | <ul><li>'[묶음할인~25%+T11%]에뛰드 타임어택 ~60% 전품목 빅세일/호랑이의 해 무직타이거 콜라보 런칭 50.패치(1)_매끈반짝3단코팩5개_650000010398 쇼킹딜 홈>뷰티>선케어/메이크업>아이메이크업;11st>메이크업>아이메이크업>아이섀도우;11st>뷰티>선케어/메이크업>아이메이크업;11st Hour Event > 패션/뷰티 > 뷰티 > 선케어/메이크업 > 아이메이크업 11st Hour Event > 패션/뷰티 > 뷰티 > 선케어/메이크업 > 아이메이크업'</li><li>'차앤박 안티포어 블랙헤드 클리어 키트 스트립 (#M)홈>화장품/미용>마스크/팩>코팩 Naverstore > 화장품/미용 > 마스크/팩 > 코팩'</li><li>'[차앤박] CNP 안티포어 블랙헤드 클리어 키트 스트립 3세트(3회분) (#M)위메프 > 뷰티 > 스킨케어 > 팩/마스크 > 코팩 위메프 > 뷰티 > 스킨케어 > 팩/마스크 > 코팩'</li></ul> |
| 0 | <ul><li>'[10%+15%]한스킨 6월 클리어런스 클렌징오일/토너패드/에센스/블랙헤드/마스크~81%OF 블레미쉬 커버 컨실러_브라이트 [GH990355] 쇼킹딜 홈>뷰티>선케어/메이크업>페이스메이크업;11st>뷰티>선케어/메이크업>페이스메이크업;11st>메이크업>페이스메이크업>BB크림;11st > 뷰티 > 메이크업 > 페이스메이크업 11st Hour Event > 패션/뷰티 > 뷰티 > 선케어/메이크업 > 페이스메이크업'</li><li>'네이처리퍼블릭 [네이처리퍼블릭][1+1]수딩 앤 모이스처 알로에베라 수딩젤 마스크시트 단일옵션 × 선택완료 쿠팡 홈>뷰티>스킨케어>마스크/팩>코팩/기타패치>기타패치;Coupang > 뷰티 > 로드샵 > 스킨케어 > 마스크/팩 > 코팩/기타패치 > 기타패치;(#M)쿠팡 홈>뷰티>스킨케어>마스크/팩>패치/코팩>기타패치 Coupang > 뷰티 > 스킨케어 > 마스크/팩 > 패치/코팩 > 기타패치'</li><li>'이니스프리 블랙티 유스 인핸싱 앰플 마스크 28ml 1개입 × 5개 LotteOn > 뷰티 > 스킨케어 > 마스크/팩 > 마스크팩 LotteOn > 뷰티 > 스킨케어 > 마스크/팩 > 마스크팩'</li></ul> |
| 2 | <ul><li>'[쿠폰30%+스토어10%]에뛰드 ~64% 21년 신제품 앵콜전(플레이컬러아이즈/그림자쉐딩/픽싱틴트/순정) 58.AC 클린업_핑크마스크_111080503 쇼킹딜 홈>뷰티>스킨케어>크림;쇼킹딜 홈>뷰티>스킨케어>스킨/로션;11st>스킨케어>스킨/토너>스킨/토너;11st>메이크업>아이메이크업>아이섀도우;쇼킹딜 홈>뷰티>선케어/메이크업>아이메이크업;11st>뷰티>선케어/메이크업>아이메이크업;11st > timedeal 11st Hour Event > 패션/뷰티 > 뷰티 > 선케어/메이크업 > 아이메이크업'</li><li>'마스크 오브 매그너민티 315g 파워 마스크 (#M)뷰티>헤어/바디/미용기기>헤어케어>기획세트 CJmall > 뷰티 > 헤어/바디/미용기기 > 헤어스타일링 > 왁스/스프레이'</li><li>'[말썽피부케어추천] 쑥뜸팩+쑥카밍젤 (#M)위메프 > 뷰티 > 클렌징/필링 > 필링젤/스크럽 > 필링젤/스크럽 위메프 > 뷰티 > 클렌징/필링 > 필링젤/스크럽 > 필링젤/스크럽'</li></ul> |
| 1 | <ul><li>'티르티르 물광 콜라겐 生생크림 버블팩 물광마스크 노워시 80ml 당일출고 티르티르콜라겐80ml (#M)홈>화장품/미용>스킨케어>크림 Naverstore > 화장품/미용 > 스킨케어 > 크림'</li><li>"달바 모델 한혜진's pick 화이트트러플 세럼 7통+아이크림1통 단일상품 TV쇼핑>TV쇼핑 화장품/이미용>화장품/향수>기초스킨케어;(#M)TV상품>TV쇼핑 화장품/이미용>화장품/향수>기초스킨케어 CJmall > 뷰티 > 화장품/향수 > 더모코스메틱 > 에센스/세럼/오일"</li><li>'시슬리 벨벳 슬리핑 마스크 LotteOn > 뷰티 > 남성화장품 > 남성화장품세트 LotteOn > 뷰티 > 남성화장품 > 남성화장품세트'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.5683 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bt_top3_test")
# Run inference
preds = model("메디힐 티트리 케어솔루션 에센셜 마스크 이엑스 LotteOn > 뷰티 > 마스크/팩 > 마스크팩 LotteOn > 뷰티 > 마스크/팩 > 마스크팩")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 12 | 22.655 | 91 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 50 |
| 1 | 50 |
| 2 | 50 |
| 3 | 50 |
### Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 100
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0032 | 1 | 0.478 | - |
| 0.1597 | 50 | 0.4392 | - |
| 0.3195 | 100 | 0.4128 | - |
| 0.4792 | 150 | 0.3767 | - |
| 0.6390 | 200 | 0.3406 | - |
| 0.7987 | 250 | 0.2889 | - |
| 0.9585 | 300 | 0.2482 | - |
| 1.1182 | 350 | 0.2336 | - |
| 1.2780 | 400 | 0.1948 | - |
| 1.4377 | 450 | 0.1284 | - |
| 1.5974 | 500 | 0.0958 | - |
| 1.7572 | 550 | 0.0893 | - |
| 1.9169 | 600 | 0.0788 | - |
| 2.0767 | 650 | 0.0706 | - |
| 2.2364 | 700 | 0.058 | - |
| 2.3962 | 750 | 0.0476 | - |
| 2.5559 | 800 | 0.0406 | - |
| 2.7157 | 850 | 0.0327 | - |
| 2.8754 | 900 | 0.0198 | - |
| 3.0351 | 950 | 0.0183 | - |
| 3.1949 | 1000 | 0.0131 | - |
| 3.3546 | 1050 | 0.0093 | - |
| 3.5144 | 1100 | 0.005 | - |
| 3.6741 | 1150 | 0.0004 | - |
| 3.8339 | 1200 | 0.0001 | - |
| 3.9936 | 1250 | 0.0001 | - |
| 4.1534 | 1300 | 0.0 | - |
| 4.3131 | 1350 | 0.0001 | - |
| 4.4728 | 1400 | 0.0 | - |
| 4.6326 | 1450 | 0.0 | - |
| 4.7923 | 1500 | 0.0 | - |
| 4.9521 | 1550 | 0.0 | - |
| 5.1118 | 1600 | 0.0 | - |
| 5.2716 | 1650 | 0.0006 | - |
| 5.4313 | 1700 | 0.0001 | - |
| 5.5911 | 1750 | 0.0 | - |
| 5.7508 | 1800 | 0.0 | - |
| 5.9105 | 1850 | 0.0 | - |
| 6.0703 | 1900 | 0.0 | - |
| 6.2300 | 1950 | 0.0 | - |
| 6.3898 | 2000 | 0.0 | - |
| 6.5495 | 2050 | 0.0 | - |
| 6.7093 | 2100 | 0.0 | - |
| 6.8690 | 2150 | 0.0 | - |
| 7.0288 | 2200 | 0.0 | - |
| 7.1885 | 2250 | 0.0 | - |
| 7.3482 | 2300 | 0.0 | - |
| 7.5080 | 2350 | 0.0 | - |
| 7.6677 | 2400 | 0.0 | - |
| 7.8275 | 2450 | 0.0 | - |
| 7.9872 | 2500 | 0.0 | - |
| 8.1470 | 2550 | 0.0 | - |
| 8.3067 | 2600 | 0.0002 | - |
| 8.4665 | 2650 | 0.0 | - |
| 8.6262 | 2700 | 0.0 | - |
| 8.7859 | 2750 | 0.0001 | - |
| 8.9457 | 2800 | 0.0 | - |
| 9.1054 | 2850 | 0.0 | - |
| 9.2652 | 2900 | 0.0 | - |
| 9.4249 | 2950 | 0.0002 | - |
| 9.5847 | 3000 | 0.0096 | - |
| 9.7444 | 3050 | 0.0007 | - |
| 9.9042 | 3100 | 0.0006 | - |
| 10.0639 | 3150 | 0.0005 | - |
| 10.2236 | 3200 | 0.0001 | - |
| 10.3834 | 3250 | 0.0018 | - |
| 10.5431 | 3300 | 0.0003 | - |
| 10.7029 | 3350 | 0.0003 | - |
| 10.8626 | 3400 | 0.0 | - |
| 11.0224 | 3450 | 0.0016 | - |
| 11.1821 | 3500 | 0.0058 | - |
| 11.3419 | 3550 | 0.0055 | - |
| 11.5016 | 3600 | 0.005 | - |
| 11.6613 | 3650 | 0.0062 | - |
| 11.8211 | 3700 | 0.0017 | - |
| 11.9808 | 3750 | 0.0002 | - |
| 12.1406 | 3800 | 0.0001 | - |
| 12.3003 | 3850 | 0.0 | - |
| 12.4601 | 3900 | 0.0 | - |
| 12.6198 | 3950 | 0.0 | - |
| 12.7796 | 4000 | 0.0 | - |
| 12.9393 | 4050 | 0.0 | - |
| 13.0990 | 4100 | 0.0 | - |
| 13.2588 | 4150 | 0.0 | - |
| 13.4185 | 4200 | 0.0 | - |
| 13.5783 | 4250 | 0.0 | - |
| 13.7380 | 4300 | 0.0 | - |
| 13.8978 | 4350 | 0.0 | - |
| 14.0575 | 4400 | 0.0 | - |
| 14.2173 | 4450 | 0.0 | - |
| 14.3770 | 4500 | 0.0 | - |
| 14.5367 | 4550 | 0.0 | - |
| 14.6965 | 4600 | 0.0 | - |
| 14.8562 | 4650 | 0.0 | - |
| 15.0160 | 4700 | 0.0 | - |
| 15.1757 | 4750 | 0.0 | - |
| 15.3355 | 4800 | 0.0 | - |
| 15.4952 | 4850 | 0.0 | - |
| 15.6550 | 4900 | 0.0 | - |
| 15.8147 | 4950 | 0.0 | - |
| 15.9744 | 5000 | 0.0 | - |
| 16.1342 | 5050 | 0.0 | - |
| 16.2939 | 5100 | 0.0 | - |
| 16.4537 | 5150 | 0.0 | - |
| 16.6134 | 5200 | 0.0 | - |
| 16.7732 | 5250 | 0.0 | - |
| 16.9329 | 5300 | 0.0 | - |
| 17.0927 | 5350 | 0.0 | - |
| 17.2524 | 5400 | 0.0 | - |
| 17.4121 | 5450 | 0.0 | - |
| 17.5719 | 5500 | 0.0 | - |
| 17.7316 | 5550 | 0.0 | - |
| 17.8914 | 5600 | 0.0 | - |
| 18.0511 | 5650 | 0.0 | - |
| 18.2109 | 5700 | 0.0 | - |
| 18.3706 | 5750 | 0.0 | - |
| 18.5304 | 5800 | 0.0 | - |
| 18.6901 | 5850 | 0.0 | - |
| 18.8498 | 5900 | 0.0 | - |
| 19.0096 | 5950 | 0.0 | - |
| 19.1693 | 6000 | 0.0 | - |
| 19.3291 | 6050 | 0.0 | - |
| 19.4888 | 6100 | 0.0 | - |
| 19.6486 | 6150 | 0.0 | - |
| 19.8083 | 6200 | 0.0 | - |
| 19.9681 | 6250 | 0.0 | - |
| 20.1278 | 6300 | 0.0 | - |
| 20.2875 | 6350 | 0.0 | - |
| 20.4473 | 6400 | 0.0 | - |
| 20.6070 | 6450 | 0.0 | - |
| 20.7668 | 6500 | 0.0 | - |
| 20.9265 | 6550 | 0.0 | - |
| 21.0863 | 6600 | 0.0 | - |
| 21.2460 | 6650 | 0.0 | - |
| 21.4058 | 6700 | 0.0 | - |
| 21.5655 | 6750 | 0.0 | - |
| 21.7252 | 6800 | 0.0 | - |
| 21.8850 | 6850 | 0.0 | - |
| 22.0447 | 6900 | 0.0 | - |
| 22.2045 | 6950 | 0.0 | - |
| 22.3642 | 7000 | 0.0 | - |
| 22.5240 | 7050 | 0.0 | - |
| 22.6837 | 7100 | 0.0 | - |
| 22.8435 | 7150 | 0.0 | - |
| 23.0032 | 7200 | 0.0 | - |
| 23.1629 | 7250 | 0.0 | - |
| 23.3227 | 7300 | 0.0 | - |
| 23.4824 | 7350 | 0.0 | - |
| 23.6422 | 7400 | 0.0 | - |
| 23.8019 | 7450 | 0.0 | - |
| 23.9617 | 7500 | 0.0 | - |
| 24.1214 | 7550 | 0.0 | - |
| 24.2812 | 7600 | 0.0 | - |
| 24.4409 | 7650 | 0.0 | - |
| 24.6006 | 7700 | 0.0 | - |
| 24.7604 | 7750 | 0.0 | - |
| 24.9201 | 7800 | 0.0 | - |
| 25.0799 | 7850 | 0.0 | - |
| 25.2396 | 7900 | 0.0 | - |
| 25.3994 | 7950 | 0.0 | - |
| 25.5591 | 8000 | 0.0 | - |
| 25.7188 | 8050 | 0.0 | - |
| 25.8786 | 8100 | 0.0 | - |
| 26.0383 | 8150 | 0.0 | - |
| 26.1981 | 8200 | 0.0 | - |
| 26.3578 | 8250 | 0.0 | - |
| 26.5176 | 8300 | 0.0 | - |
| 26.6773 | 8350 | 0.0 | - |
| 26.8371 | 8400 | 0.0 | - |
| 26.9968 | 8450 | 0.0 | - |
| 27.1565 | 8500 | 0.0 | - |
| 27.3163 | 8550 | 0.0 | - |
| 27.4760 | 8600 | 0.0 | - |
| 27.6358 | 8650 | 0.0 | - |
| 27.7955 | 8700 | 0.0 | - |
| 27.9553 | 8750 | 0.0 | - |
| 28.1150 | 8800 | 0.0 | - |
| 28.2748 | 8850 | 0.0 | - |
| 28.4345 | 8900 | 0.0 | - |
| 28.5942 | 8950 | 0.0 | - |
| 28.7540 | 9000 | 0.0 | - |
| 28.9137 | 9050 | 0.0 | - |
| 29.0735 | 9100 | 0.0 | - |
| 29.2332 | 9150 | 0.0 | - |
| 29.3930 | 9200 | 0.0 | - |
| 29.5527 | 9250 | 0.0 | - |
| 29.7125 | 9300 | 0.0 | - |
| 29.8722 | 9350 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |