Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +442 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +66 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: mini1013/master_domain
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget:
|
13 |
+
- text: 엔프라니 옴므 선블록 썬크림 남성용 선크림 (#M)화장품/미용>남성화장품>선크림 Naverstore > 화장품/미용 > 남성화장품
|
14 |
+
> 선크림
|
15 |
+
- text: (시세이도)(시세이도)(특별한정) 파란자차 50ml 세트(+파란자차 정품 용량) NEW 파란자차 (정품) (#M)화장품/향수>선케어>선크림
|
16 |
+
Gmarket > 뷰티 > 화장품/향수 > 선케어 > 선크림
|
17 |
+
- text: 에스쁘아 워터스플래쉬 선크림 SPF50+ PA+++ 60ml × 5개 (#M)쿠팡 홈>뷰티>스킨케어>선케어/태닝>선케어>선블록/선크림/선로션
|
18 |
+
Coupang > 뷰티 > 스킨케어 > 선케어/태닝 > 선케어 > 선블록/선크림/선로션
|
19 |
+
- text: 이니스프리 인텐시브 롱래스팅 선스크린50ml 50ml × 6개 LotteOn > 뷰티 > 남성화장품 > 스킨 LotteOn > 뷰티
|
20 |
+
> 남성화장품 > 스킨
|
21 |
+
- text: 에스트라 리제덤 RX 듀얼 선크림 +BB 50ml 병원전용제품 (#M)SSG.COM/메이크업/베이스메이크업/BB/CC크림 ssg
|
22 |
+
> 뷰티 > 메이크업 > 베이스메이크업 > BB/CC크림
|
23 |
+
inference: true
|
24 |
+
model-index:
|
25 |
+
- name: SetFit with mini1013/master_domain
|
26 |
+
results:
|
27 |
+
- task:
|
28 |
+
type: text-classification
|
29 |
+
name: Text Classification
|
30 |
+
dataset:
|
31 |
+
name: Unknown
|
32 |
+
type: unknown
|
33 |
+
split: test
|
34 |
+
metrics:
|
35 |
+
- type: accuracy
|
36 |
+
value: 0.4902962206332993
|
37 |
+
name: Accuracy
|
38 |
+
---
|
39 |
+
|
40 |
+
# SetFit with mini1013/master_domain
|
41 |
+
|
42 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
43 |
+
|
44 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
45 |
+
|
46 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
47 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
48 |
+
|
49 |
+
## Model Details
|
50 |
+
|
51 |
+
### Model Description
|
52 |
+
- **Model Type:** SetFit
|
53 |
+
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
|
54 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
55 |
+
- **Maximum Sequence Length:** 512 tokens
|
56 |
+
- **Number of Classes:** 5 classes
|
57 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
58 |
+
<!-- - **Language:** Unknown -->
|
59 |
+
<!-- - **License:** Unknown -->
|
60 |
+
|
61 |
+
### Model Sources
|
62 |
+
|
63 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
64 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
65 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
66 |
+
|
67 |
+
### Model Labels
|
68 |
+
| Label | Examples |
|
69 |
+
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
70 |
+
| 2 | <ul><li>'이니스프리 노세범 선쿠션 SPF50+ PA++++ 14g × 2개 (#M)위메프 > 뷰티 > 메이크업 > 베이스 메이크업 > 파우더/팩트 위메프 > 뷰티 > 메이크업 > 베이스 메이크업 > 파우더/팩트'</li><li>'스킨 세팅 톤업 선 쿠션(리필포함) + 추가구성품 톤업 선 쿠션 LotteOn > 백화점 > 뷰티 > 상단 배너 (Mobile) LotteOn > 뷰티 > 메이크업 > 베이스메이크업 > 쿠션/팩트'</li><li>'이니스프��� 노세범 선쿠션 리필 14g 1 +1 (#M)쿠팡 홈>뷰티>스킨케어>선케어/태닝>선케어>선스틱 Coupang > 뷰티 > 로드샵 > 스킨케어 > 선케어/태닝'</li></ul> |
|
71 |
+
| 1 | <ul><li>'SUNDANCE 썬댄스 햇빛 차단+태닝 선스프레이 LSF 50, 200ml ssg > 뷰티 > 스킨케어 > 선케어 > 선스프레이 ssg > 뷰티 > 스킨케어 > 선케어 > 선스프레이'</li><li>'리더스 여름자외선 썬버디 올 오버 선 스프레이 180ml MinSellAmount (#M)화장품/향수>선케어>선스프레이 Gmarket > 뷰티 > 화장품/향수 > 선케어 > 선스프레이'</li><li>'온더바디 헬로키티 에코 썬 스프레이 120ml+120ml 기획세트 (#M)홈>화장품/미용>선케어>선케어세트 Naverstore > 화장품/미용 > 선케어 > 선케어세트'</li></ul> |
|
72 |
+
| 0 | <ul><li>'[피지오겔] [정가 85,000원] 레드 수딩 AI 에어리 썬스틱 1+1 특별기획 롯데홈쇼핑 > 뷰티 > 남성화장품 LotteOn > 뷰티 > 남성화장품 > 선크림'</li><li>'[빌리프][2106] 해피 보 이지워시 선스틱 18g 세트(타임스퀘어점패션관) (#M)11st>선케어>선밤>선밤 11st > 뷰티 > 선케어 > 선밤 > 선밤'</li><li>'피지오겔 레드 수딩 AI 에어리 썬스틱 7g 1+1(2개) (#M)홈>스킨케어>선케어 HMALL > 뷰티 > 스킨케어 > 선케어'</li></ul> |
|
73 |
+
| 4 | <ul><li>'오스트레일리안골드 헴프네이션 오리지널 탠 익스텐더 바디로션 535ml (#M)SSG.COM/스킨케어/선케어/태닝 ssg > 뷰티 > 스킨케어 > 선케어 > 태닝'</li><li>'수딩앤모이스처 알로에베라92%수딩젤300ml (#M)홈>화장품/미용>바디케어>바디로션 Naverstore > 화장품/미용 > 바디케어 > 바디로션'</li><li>'세인트 트로페즈 셀프 탠 익스프레스 어드밴스드 브론징 무스 200ml (#M)SSG.COM/스킨케어/선케어/태닝 ssg > 뷰티 > 스킨케어 > 선케어 > 태닝'</li></ul> |
|
74 |
+
| 3 | <ul><li>'[맥퀸뉴욕] 1+ 1 UV 데일리 모이스처(수분) 선크림 1+1 UV 데일리 모이스처 선크림 (#M)SSG.COM/메이크업/립메이크업/립글로스 ssg > 뷰티 > 메이크업 > 아이메이크업 > 아이라이너'</li><li>'[공식] 더마비 10주년 바디로션/기획세트/멀티오일/프레쉬/크림/워시 1+1 S11.(애브리데이) 대용량 선블록 200ml×2개_S1.튜브견본(랜덤) 쇼킹딜 홈;쇼킹딜 홈>뷰티>바디/향수>바디케어;11st>뷰티>바디/향수>바디케어;11st>바디케어>바디로션>바디로션;11st > 뷰티 > 바디케어 > 바디로션 11st Hour Event > 패션/뷰티 > 뷰티 > 바디/향수 > 바디케어'</li><li>'[20%찜+T11%+묶음+당일 ] 롬앤 11번가 런칭! 모든 취향 취급 중! 밀크 그로서리 외 BEST 1+1 옵션31. 제로 선 클린 단품_01 프레쉬 쇼킹딜 홈>뷰티>선케어/메이크업>립/치크메이크업;11st>메이크업>립메이크업>립틴트;11st>뷰티>선케어/메이크업>립/치크메이크업;11st>뷰티>선케어/메이크업>아이메이크업;11st>메이크업>아이메이크업>마스카라;11st Hour Event > 패션/뷰티 > 뷰티 > 선케어/메이크업 > 립/치크메이크업 11st Hour Event > 패션/뷰티 > 뷰티 > 선케어/메이크업 > 아이메이크업'</li></ul> |
|
75 |
+
|
76 |
+
## Evaluation
|
77 |
+
|
78 |
+
### Metrics
|
79 |
+
| Label | Accuracy |
|
80 |
+
|:--------|:---------|
|
81 |
+
| **all** | 0.4903 |
|
82 |
+
|
83 |
+
## Uses
|
84 |
+
|
85 |
+
### Direct Use for Inference
|
86 |
+
|
87 |
+
First install the SetFit library:
|
88 |
+
|
89 |
+
```bash
|
90 |
+
pip install setfit
|
91 |
+
```
|
92 |
+
|
93 |
+
Then you can load this model and run inference.
|
94 |
+
|
95 |
+
```python
|
96 |
+
from setfit import SetFitModel
|
97 |
+
|
98 |
+
# Download from the 🤗 Hub
|
99 |
+
model = SetFitModel.from_pretrained("mini1013/master_cate_bt_top8_test")
|
100 |
+
# Run inference
|
101 |
+
preds = model("엔���라니 옴므 선블록 썬크림 남성용 선크림 (#M)화장품/미용>남성화장품>선크림 Naverstore > 화장품/미용 > 남성화장품 > 선크림")
|
102 |
+
```
|
103 |
+
|
104 |
+
<!--
|
105 |
+
### Downstream Use
|
106 |
+
|
107 |
+
*List how someone could finetune this model on their own dataset.*
|
108 |
+
-->
|
109 |
+
|
110 |
+
<!--
|
111 |
+
### Out-of-Scope Use
|
112 |
+
|
113 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
114 |
+
-->
|
115 |
+
|
116 |
+
<!--
|
117 |
+
## Bias, Risks and Limitations
|
118 |
+
|
119 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
120 |
+
-->
|
121 |
+
|
122 |
+
<!--
|
123 |
+
### Recommendations
|
124 |
+
|
125 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
126 |
+
-->
|
127 |
+
|
128 |
+
## Training Details
|
129 |
+
|
130 |
+
### Training Set Metrics
|
131 |
+
| Training set | Min | Median | Max |
|
132 |
+
|:-------------|:----|:-------|:----|
|
133 |
+
| Word count | 11 | 21.656 | 72 |
|
134 |
+
|
135 |
+
| Label | Training Sample Count |
|
136 |
+
|:------|:----------------------|
|
137 |
+
| 0 | 50 |
|
138 |
+
| 1 | 50 |
|
139 |
+
| 2 | 50 |
|
140 |
+
| 3 | 50 |
|
141 |
+
| 4 | 50 |
|
142 |
+
|
143 |
+
### Training Hyperparameters
|
144 |
+
- batch_size: (64, 64)
|
145 |
+
- num_epochs: (30, 30)
|
146 |
+
- max_steps: -1
|
147 |
+
- sampling_strategy: oversampling
|
148 |
+
- num_iterations: 100
|
149 |
+
- body_learning_rate: (2e-05, 1e-05)
|
150 |
+
- head_learning_rate: 0.01
|
151 |
+
- loss: CosineSimilarityLoss
|
152 |
+
- distance_metric: cosine_distance
|
153 |
+
- margin: 0.25
|
154 |
+
- end_to_end: False
|
155 |
+
- use_amp: False
|
156 |
+
- warmup_proportion: 0.1
|
157 |
+
- l2_weight: 0.01
|
158 |
+
- seed: 42
|
159 |
+
- eval_max_steps: -1
|
160 |
+
- load_best_model_at_end: False
|
161 |
+
|
162 |
+
### Training Results
|
163 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
164 |
+
|:-------:|:-----:|:-------------:|:---------------:|
|
165 |
+
| 0.0026 | 1 | 0.4513 | - |
|
166 |
+
| 0.1279 | 50 | 0.4435 | - |
|
167 |
+
| 0.2558 | 100 | 0.4063 | - |
|
168 |
+
| 0.3836 | 150 | 0.3413 | - |
|
169 |
+
| 0.5115 | 200 | 0.2997 | - |
|
170 |
+
| 0.6394 | 250 | 0.2434 | - |
|
171 |
+
| 0.7673 | 300 | 0.1724 | - |
|
172 |
+
| 0.8951 | 350 | 0.1334 | - |
|
173 |
+
| 1.0230 | 400 | 0.1078 | - |
|
174 |
+
| 1.1509 | 450 | 0.0997 | - |
|
175 |
+
| 1.2788 | 500 | 0.0937 | - |
|
176 |
+
| 1.4066 | 550 | 0.0933 | - |
|
177 |
+
| 1.5345 | 600 | 0.0909 | - |
|
178 |
+
| 1.6624 | 650 | 0.0897 | - |
|
179 |
+
| 1.7903 | 700 | 0.0842 | - |
|
180 |
+
| 1.9182 | 750 | 0.0741 | - |
|
181 |
+
| 2.0460 | 800 | 0.0764 | - |
|
182 |
+
| 2.1739 | 850 | 0.0745 | - |
|
183 |
+
| 2.3018 | 900 | 0.0733 | - |
|
184 |
+
| 2.4297 | 950 | 0.0748 | - |
|
185 |
+
| 2.5575 | 1000 | 0.0718 | - |
|
186 |
+
| 2.6854 | 1050 | 0.0568 | - |
|
187 |
+
| 2.8133 | 1100 | 0.0415 | - |
|
188 |
+
| 2.9412 | 1150 | 0.0256 | - |
|
189 |
+
| 3.0691 | 1200 | 0.0233 | - |
|
190 |
+
| 3.1969 | 1250 | 0.0128 | - |
|
191 |
+
| 3.3248 | 1300 | 0.0088 | - |
|
192 |
+
| 3.4527 | 1350 | 0.0066 | - |
|
193 |
+
| 3.5806 | 1400 | 0.0058 | - |
|
194 |
+
| 3.7084 | 1450 | 0.006 | - |
|
195 |
+
| 3.8363 | 1500 | 0.0058 | - |
|
196 |
+
| 3.9642 | 1550 | 0.0039 | - |
|
197 |
+
| 4.0921 | 1600 | 0.0043 | - |
|
198 |
+
| 4.2199 | 1650 | 0.0033 | - |
|
199 |
+
| 4.3478 | 1700 | 0.0059 | - |
|
200 |
+
| 4.4757 | 1750 | 0.0065 | - |
|
201 |
+
| 4.6036 | 1800 | 0.0061 | - |
|
202 |
+
| 4.7315 | 1850 | 0.0052 | - |
|
203 |
+
| 4.8593 | 1900 | 0.0054 | - |
|
204 |
+
| 4.9872 | 1950 | 0.0043 | - |
|
205 |
+
| 5.1151 | 2000 | 0.0064 | - |
|
206 |
+
| 5.2430 | 2050 | 0.0042 | - |
|
207 |
+
| 5.3708 | 2100 | 0.0046 | - |
|
208 |
+
| 5.4987 | 2150 | 0.0038 | - |
|
209 |
+
| 5.6266 | 2200 | 0.0031 | - |
|
210 |
+
| 5.7545 | 2250 | 0.0021 | - |
|
211 |
+
| 5.8824 | 2300 | 0.0006 | - |
|
212 |
+
| 6.0102 | 2350 | 0.0003 | - |
|
213 |
+
| 6.1381 | 2400 | 0.0001 | - |
|
214 |
+
| 6.2660 | 2450 | 0.0002 | - |
|
215 |
+
| 6.3939 | 2500 | 0.0 | - |
|
216 |
+
| 6.5217 | 2550 | 0.0 | - |
|
217 |
+
| 6.6496 | 2600 | 0.0001 | - |
|
218 |
+
| 6.7775 | 2650 | 0.0 | - |
|
219 |
+
| 6.9054 | 2700 | 0.0 | - |
|
220 |
+
| 7.0332 | 2750 | 0.0 | - |
|
221 |
+
| 7.1611 | 2800 | 0.0 | - |
|
222 |
+
| 7.2890 | 2850 | 0.0 | - |
|
223 |
+
| 7.4169 | 2900 | 0.0 | - |
|
224 |
+
| 7.5448 | 2950 | 0.0 | - |
|
225 |
+
| 7.6726 | 3000 | 0.0 | - |
|
226 |
+
| 7.8005 | 3050 | 0.0 | - |
|
227 |
+
| 7.9284 | 3100 | 0.0 | - |
|
228 |
+
| 8.0563 | 3150 | 0.0 | - |
|
229 |
+
| 8.1841 | 3200 | 0.0 | - |
|
230 |
+
| 8.3120 | 3250 | 0.0 | - |
|
231 |
+
| 8.4399 | 3300 | 0.0 | - |
|
232 |
+
| 8.5678 | 3350 | 0.0 | - |
|
233 |
+
| 8.6957 | 3400 | 0.0 | - |
|
234 |
+
| 8.8235 | 3450 | 0.0 | - |
|
235 |
+
| 8.9514 | 3500 | 0.0 | - |
|
236 |
+
| 9.0793 | 3550 | 0.0 | - |
|
237 |
+
| 9.2072 | 3600 | 0.0 | - |
|
238 |
+
| 9.3350 | 3650 | 0.0 | - |
|
239 |
+
| 9.4629 | 3700 | 0.0 | - |
|
240 |
+
| 9.5908 | 3750 | 0.0 | - |
|
241 |
+
| 9.7187 | 3800 | 0.0 | - |
|
242 |
+
| 9.8465 | 3850 | 0.0 | - |
|
243 |
+
| 9.9744 | 3900 | 0.0 | - |
|
244 |
+
| 10.1023 | 3950 | 0.0 | - |
|
245 |
+
| 10.2302 | 4000 | 0.0 | - |
|
246 |
+
| 10.3581 | 4050 | 0.0 | - |
|
247 |
+
| 10.4859 | 4100 | 0.0 | - |
|
248 |
+
| 10.6138 | 4150 | 0.0 | - |
|
249 |
+
| 10.7417 | 4200 | 0.0 | - |
|
250 |
+
| 10.8696 | 4250 | 0.0 | - |
|
251 |
+
| 10.9974 | 4300 | 0.0 | - |
|
252 |
+
| 11.1253 | 4350 | 0.0 | - |
|
253 |
+
| 11.2532 | 4400 | 0.0 | - |
|
254 |
+
| 11.3811 | 4450 | 0.0 | - |
|
255 |
+
| 11.5090 | 4500 | 0.0 | - |
|
256 |
+
| 11.6368 | 4550 | 0.0 | - |
|
257 |
+
| 11.7647 | 4600 | 0.0 | - |
|
258 |
+
| 11.8926 | 4650 | 0.0 | - |
|
259 |
+
| 12.0205 | 4700 | 0.0 | - |
|
260 |
+
| 12.1483 | 4750 | 0.0 | - |
|
261 |
+
| 12.2762 | 4800 | 0.0 | - |
|
262 |
+
| 12.4041 | 4850 | 0.0 | - |
|
263 |
+
| 12.5320 | 4900 | 0.0 | - |
|
264 |
+
| 12.6598 | 4950 | 0.0 | - |
|
265 |
+
| 12.7877 | 5000 | 0.0 | - |
|
266 |
+
| 12.9156 | 5050 | 0.0 | - |
|
267 |
+
| 13.0435 | 5100 | 0.0 | - |
|
268 |
+
| 13.1714 | 5150 | 0.0 | - |
|
269 |
+
| 13.2992 | 5200 | 0.0 | - |
|
270 |
+
| 13.4271 | 5250 | 0.0 | - |
|
271 |
+
| 13.5550 | 5300 | 0.0 | - |
|
272 |
+
| 13.6829 | 5350 | 0.0 | - |
|
273 |
+
| 13.8107 | 5400 | 0.0 | - |
|
274 |
+
| 13.9386 | 5450 | 0.0 | - |
|
275 |
+
| 14.0665 | 5500 | 0.0 | - |
|
276 |
+
| 14.1944 | 5550 | 0.0 | - |
|
277 |
+
| 14.3223 | 5600 | 0.0 | - |
|
278 |
+
| 14.4501 | 5650 | 0.0 | - |
|
279 |
+
| 14.5780 | 5700 | 0.0 | - |
|
280 |
+
| 14.7059 | 5750 | 0.0 | - |
|
281 |
+
| 14.8338 | 5800 | 0.0 | - |
|
282 |
+
| 14.9616 | 5850 | 0.0 | - |
|
283 |
+
| 15.0895 | 5900 | 0.0 | - |
|
284 |
+
| 15.2174 | 5950 | 0.0 | - |
|
285 |
+
| 15.3453 | 6000 | 0.0 | - |
|
286 |
+
| 15.4731 | 6050 | 0.0 | - |
|
287 |
+
| 15.6010 | 6100 | 0.0 | - |
|
288 |
+
| 15.7289 | 6150 | 0.0 | - |
|
289 |
+
| 15.8568 | 6200 | 0.0 | - |
|
290 |
+
| 15.9847 | 6250 | 0.0 | - |
|
291 |
+
| 16.1125 | 6300 | 0.0 | - |
|
292 |
+
| 16.2404 | 6350 | 0.0 | - |
|
293 |
+
| 16.3683 | 6400 | 0.0 | - |
|
294 |
+
| 16.4962 | 6450 | 0.0 | - |
|
295 |
+
| 16.6240 | 6500 | 0.0 | - |
|
296 |
+
| 16.7519 | 6550 | 0.0 | - |
|
297 |
+
| 16.8798 | 6600 | 0.0 | - |
|
298 |
+
| 17.0077 | 6650 | 0.0 | - |
|
299 |
+
| 17.1355 | 6700 | 0.0 | - |
|
300 |
+
| 17.2634 | 6750 | 0.0 | - |
|
301 |
+
| 17.3913 | 6800 | 0.0 | - |
|
302 |
+
| 17.5192 | 6850 | 0.0 | - |
|
303 |
+
| 17.6471 | 6900 | 0.0 | - |
|
304 |
+
| 17.7749 | 6950 | 0.0 | - |
|
305 |
+
| 17.9028 | 7000 | 0.0 | - |
|
306 |
+
| 18.0307 | 7050 | 0.0 | - |
|
307 |
+
| 18.1586 | 7100 | 0.0 | - |
|
308 |
+
| 18.2864 | 7150 | 0.0 | - |
|
309 |
+
| 18.4143 | 7200 | 0.0 | - |
|
310 |
+
| 18.5422 | 7250 | 0.0 | - |
|
311 |
+
| 18.6701 | 7300 | 0.0 | - |
|
312 |
+
| 18.7980 | 7350 | 0.0 | - |
|
313 |
+
| 18.9258 | 7400 | 0.0 | - |
|
314 |
+
| 19.0537 | 7450 | 0.0 | - |
|
315 |
+
| 19.1816 | 7500 | 0.0 | - |
|
316 |
+
| 19.3095 | 7550 | 0.0 | - |
|
317 |
+
| 19.4373 | 7600 | 0.0 | - |
|
318 |
+
| 19.5652 | 7650 | 0.0 | - |
|
319 |
+
| 19.6931 | 7700 | 0.0 | - |
|
320 |
+
| 19.8210 | 7750 | 0.0 | - |
|
321 |
+
| 19.9488 | 7800 | 0.0 | - |
|
322 |
+
| 20.0767 | 7850 | 0.0 | - |
|
323 |
+
| 20.2046 | 7900 | 0.0 | - |
|
324 |
+
| 20.3325 | 7950 | 0.0 | - |
|
325 |
+
| 20.4604 | 8000 | 0.0 | - |
|
326 |
+
| 20.5882 | 8050 | 0.0 | - |
|
327 |
+
| 20.7161 | 8100 | 0.0 | - |
|
328 |
+
| 20.8440 | 8150 | 0.0 | - |
|
329 |
+
| 20.9719 | 8200 | 0.0 | - |
|
330 |
+
| 21.0997 | 8250 | 0.0 | - |
|
331 |
+
| 21.2276 | 8300 | 0.0 | - |
|
332 |
+
| 21.3555 | 8350 | 0.0 | - |
|
333 |
+
| 21.4834 | 8400 | 0.0 | - |
|
334 |
+
| 21.6113 | 8450 | 0.0 | - |
|
335 |
+
| 21.7391 | 8500 | 0.0 | - |
|
336 |
+
| 21.8670 | 8550 | 0.0 | - |
|
337 |
+
| 21.9949 | 8600 | 0.0 | - |
|
338 |
+
| 22.1228 | 8650 | 0.0 | - |
|
339 |
+
| 22.2506 | 8700 | 0.0 | - |
|
340 |
+
| 22.3785 | 8750 | 0.0 | - |
|
341 |
+
| 22.5064 | 8800 | 0.0 | - |
|
342 |
+
| 22.6343 | 8850 | 0.0 | - |
|
343 |
+
| 22.7621 | 8900 | 0.0 | - |
|
344 |
+
| 22.8900 | 8950 | 0.0 | - |
|
345 |
+
| 23.0179 | 9000 | 0.0 | - |
|
346 |
+
| 23.1458 | 9050 | 0.0 | - |
|
347 |
+
| 23.2737 | 9100 | 0.0 | - |
|
348 |
+
| 23.4015 | 9150 | 0.0 | - |
|
349 |
+
| 23.5294 | 9200 | 0.0 | - |
|
350 |
+
| 23.6573 | 9250 | 0.0 | - |
|
351 |
+
| 23.7852 | 9300 | 0.0 | - |
|
352 |
+
| 23.9130 | 9350 | 0.0 | - |
|
353 |
+
| 24.0409 | 9400 | 0.0 | - |
|
354 |
+
| 24.1688 | 9450 | 0.0 | - |
|
355 |
+
| 24.2967 | 9500 | 0.0 | - |
|
356 |
+
| 24.4246 | 9550 | 0.0 | - |
|
357 |
+
| 24.5524 | 9600 | 0.0 | - |
|
358 |
+
| 24.6803 | 9650 | 0.0 | - |
|
359 |
+
| 24.8082 | 9700 | 0.0 | - |
|
360 |
+
| 24.9361 | 9750 | 0.0 | - |
|
361 |
+
| 25.0639 | 9800 | 0.0 | - |
|
362 |
+
| 25.1918 | 9850 | 0.0 | - |
|
363 |
+
| 25.3197 | 9900 | 0.0 | - |
|
364 |
+
| 25.4476 | 9950 | 0.0 | - |
|
365 |
+
| 25.5754 | 10000 | 0.0 | - |
|
366 |
+
| 25.7033 | 10050 | 0.0 | - |
|
367 |
+
| 25.8312 | 10100 | 0.0 | - |
|
368 |
+
| 25.9591 | 10150 | 0.0 | - |
|
369 |
+
| 26.0870 | 10200 | 0.0 | - |
|
370 |
+
| 26.2148 | 10250 | 0.0 | - |
|
371 |
+
| 26.3427 | 10300 | 0.0 | - |
|
372 |
+
| 26.4706 | 10350 | 0.0 | - |
|
373 |
+
| 26.5985 | 10400 | 0.0 | - |
|
374 |
+
| 26.7263 | 10450 | 0.0 | - |
|
375 |
+
| 26.8542 | 10500 | 0.0 | - |
|
376 |
+
| 26.9821 | 10550 | 0.0 | - |
|
377 |
+
| 27.1100 | 10600 | 0.0 | - |
|
378 |
+
| 27.2379 | 10650 | 0.0 | - |
|
379 |
+
| 27.3657 | 10700 | 0.0 | - |
|
380 |
+
| 27.4936 | 10750 | 0.0 | - |
|
381 |
+
| 27.6215 | 10800 | 0.0 | - |
|
382 |
+
| 27.7494 | 10850 | 0.0 | - |
|
383 |
+
| 27.8772 | 10900 | 0.0 | - |
|
384 |
+
| 28.0051 | 10950 | 0.0 | - |
|
385 |
+
| 28.1330 | 11000 | 0.0 | - |
|
386 |
+
| 28.2609 | 11050 | 0.0 | - |
|
387 |
+
| 28.3887 | 11100 | 0.0 | - |
|
388 |
+
| 28.5166 | 11150 | 0.0 | - |
|
389 |
+
| 28.6445 | 11200 | 0.0 | - |
|
390 |
+
| 28.7724 | 11250 | 0.0 | - |
|
391 |
+
| 28.9003 | 11300 | 0.0 | - |
|
392 |
+
| 29.0281 | 11350 | 0.0 | - |
|
393 |
+
| 29.1560 | 11400 | 0.0 | - |
|
394 |
+
| 29.2839 | 11450 | 0.0 | - |
|
395 |
+
| 29.4118 | 11500 | 0.0 | - |
|
396 |
+
| 29.5396 | 11550 | 0.0 | - |
|
397 |
+
| 29.6675 | 11600 | 0.0 | - |
|
398 |
+
| 29.7954 | 11650 | 0.0 | - |
|
399 |
+
| 29.9233 | 11700 | 0.0 | - |
|
400 |
+
|
401 |
+
### Framework Versions
|
402 |
+
- Python: 3.10.12
|
403 |
+
- SetFit: 1.1.0
|
404 |
+
- Sentence Transformers: 3.3.1
|
405 |
+
- Transformers: 4.44.2
|
406 |
+
- PyTorch: 2.2.0a0+81ea7a4
|
407 |
+
- Datasets: 3.2.0
|
408 |
+
- Tokenizers: 0.19.1
|
409 |
+
|
410 |
+
## Citation
|
411 |
+
|
412 |
+
### BibTeX
|
413 |
+
```bibtex
|
414 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
415 |
+
doi = {10.48550/ARXIV.2209.11055},
|
416 |
+
url = {https://arxiv.org/abs/2209.11055},
|
417 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
418 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
419 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
420 |
+
publisher = {arXiv},
|
421 |
+
year = {2022},
|
422 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
423 |
+
}
|
424 |
+
```
|
425 |
+
|
426 |
+
<!--
|
427 |
+
## Glossary
|
428 |
+
|
429 |
+
*Clearly define terms in order to be accessible across audiences.*
|
430 |
+
-->
|
431 |
+
|
432 |
+
<!--
|
433 |
+
## Model Card Authors
|
434 |
+
|
435 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
436 |
+
-->
|
437 |
+
|
438 |
+
<!--
|
439 |
+
## Model Card Contact
|
440 |
+
|
441 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
442 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mini1013/master_item_bt_test_flat_top",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"tokenizer_class": "BertTokenizer",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.44.2",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.44.2",
|
5 |
+
"pytorch": "2.2.0a0+81ea7a4"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": null,
|
3 |
+
"normalize_embeddings": false
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca5767db6afd938df9ba4ffd09c97cd091e981f7273e4774a1725051ca2b2407
|
3 |
+
size 442494816
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6c03844eb5a62a80eb88636b18968ac39e2789406356ddce2d0afba8cc833364
|
3 |
+
size 31647
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[CLS]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[PAD]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": false,
|
49 |
+
"eos_token": "[SEP]",
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"max_length": 512,
|
52 |
+
"model_max_length": 512,
|
53 |
+
"never_split": null,
|
54 |
+
"pad_to_multiple_of": null,
|
55 |
+
"pad_token": "[PAD]",
|
56 |
+
"pad_token_type_id": 0,
|
57 |
+
"padding_side": "right",
|
58 |
+
"sep_token": "[SEP]",
|
59 |
+
"stride": 0,
|
60 |
+
"strip_accents": null,
|
61 |
+
"tokenize_chinese_chars": true,
|
62 |
+
"tokenizer_class": "BertTokenizer",
|
63 |
+
"truncation_side": "right",
|
64 |
+
"truncation_strategy": "longest_first",
|
65 |
+
"unk_token": "[UNK]"
|
66 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|