--- base_model: mini1013/master_domain library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: '[6][대용량] 크리니크 쏙보습크림 125ml (+디럭스 7종 증정) 쏙보습크림 125ml 홈>현대백화점>화장품>기획세트>스킨케어;(#M)홈>스킨케어>크림 HMALL > 현대백화점 > 화장품 > 기획세트 > 스킨케어' - text: 케어존 닥터솔루션 노르데나우 워터 토너 170ml (#M)SSG.COM/스킨케어/스킨/토너 ssg > 뷰티 > 스킨케어 > 스킨/토너 - text: '[AK백화점][랑콤]NEW 제니피끄 아이&래쉬 세럼 20ml[33435183] 단일상품 `1106238690` (#M)SSG.COM/스킨케어/아이/넥케어/아이크림/아이세럼 LOREAL > DepartmentSsg > 랑콤 > Branded > 제니피끄 세럼' - text: 아크웰 아쿠아씰 수딩 토닉 150ml (#M)11st>스킨케어>스킨/토너>스킨/토너 11st > 뷰티 > 스킨케어 > 스킨/토너 - text: '[랑콤][9L] NEW 레네르지 트리플 세럼 50ml 세트 세트 (#M)홈>스킨케어>에센스/앰플 HMALL > 뷰티 > 스킨케어 > 에센스/앰플' inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.8002008032128514 name: Accuracy --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 12 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 10 | | | 8 | | | 1 | | | 6 | | | 5 | | | 9 | | | 4 | | | 0 | | | 7 | | | 11 | | | 3 | | | 2 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.8002 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_bt_top9_test") # Run inference preds = model("아크웰 아쿠아씰 수딩 토닉 150ml (#M)11st>스킨케어>스킨/토너>스킨/토너 11st > 뷰티 > 스킨케어 > 스킨/토너") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 11 | 21.3033 | 91 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 50 | | 1 | 50 | | 2 | 50 | | 3 | 50 | | 4 | 50 | | 5 | 50 | | 6 | 50 | | 7 | 50 | | 8 | 50 | | 9 | 50 | | 10 | 50 | | 11 | 50 | ### Training Hyperparameters - batch_size: (64, 64) - num_epochs: (30, 30) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 100 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:-----:|:-------------:|:---------------:| | 0.0011 | 1 | 0.4352 | - | | 0.0533 | 50 | 0.431 | - | | 0.1066 | 100 | 0.4278 | - | | 0.1599 | 150 | 0.4267 | - | | 0.2132 | 200 | 0.4198 | - | | 0.2665 | 250 | 0.392 | - | | 0.3198 | 300 | 0.3682 | - | | 0.3731 | 350 | 0.3335 | - | | 0.4264 | 400 | 0.2896 | - | | 0.4797 | 450 | 0.2464 | - | | 0.5330 | 500 | 0.2338 | - | | 0.5864 | 550 | 0.2243 | - | | 0.6397 | 600 | 0.2238 | - | | 0.6930 | 650 | 0.2188 | - | | 0.7463 | 700 | 0.212 | - | | 0.7996 | 750 | 0.2139 | - | | 0.8529 | 800 | 0.2041 | - | | 0.9062 | 850 | 0.1973 | - | | 0.9595 | 900 | 0.188 | - | | 1.0128 | 950 | 0.1784 | - | | 1.0661 | 1000 | 0.1758 | - | | 1.1194 | 1050 | 0.177 | - | | 1.1727 | 1100 | 0.1735 | - | | 1.2260 | 1150 | 0.1667 | - | | 1.2793 | 1200 | 0.163 | - | | 1.3326 | 1250 | 0.1583 | - | | 1.3859 | 1300 | 0.1489 | - | | 1.4392 | 1350 | 0.1428 | - | | 1.4925 | 1400 | 0.1343 | - | | 1.5458 | 1450 | 0.1325 | - | | 1.5991 | 1500 | 0.1252 | - | | 1.6525 | 1550 | 0.1164 | - | | 1.7058 | 1600 | 0.1063 | - | | 1.7591 | 1650 | 0.0968 | - | | 1.8124 | 1700 | 0.0844 | - | | 1.8657 | 1750 | 0.0718 | - | | 1.9190 | 1800 | 0.0646 | - | | 1.9723 | 1850 | 0.0504 | - | | 2.0256 | 1900 | 0.0493 | - | | 2.0789 | 1950 | 0.0438 | - | | 2.1322 | 2000 | 0.0433 | - | | 2.1855 | 2050 | 0.0425 | - | | 2.2388 | 2100 | 0.0399 | - | | 2.2921 | 2150 | 0.0319 | - | | 2.3454 | 2200 | 0.0294 | - | | 2.3987 | 2250 | 0.0292 | - | | 2.4520 | 2300 | 0.0254 | - | | 2.5053 | 2350 | 0.0248 | - | | 2.5586 | 2400 | 0.0259 | - | | 2.6119 | 2450 | 0.0222 | - | | 2.6652 | 2500 | 0.0217 | - | | 2.7186 | 2550 | 0.0225 | - | | 2.7719 | 2600 | 0.0185 | - | | 2.8252 | 2650 | 0.0143 | - | | 2.8785 | 2700 | 0.013 | - | | 2.9318 | 2750 | 0.013 | - | | 2.9851 | 2800 | 0.0083 | - | | 3.0384 | 2850 | 0.0079 | - | | 3.0917 | 2900 | 0.0059 | - | | 3.1450 | 2950 | 0.0063 | - | | 3.1983 | 3000 | 0.0029 | - | | 3.2516 | 3050 | 0.0027 | - | | 3.3049 | 3100 | 0.0016 | - | | 3.3582 | 3150 | 0.0027 | - | | 3.4115 | 3200 | 0.0024 | - | | 3.4648 | 3250 | 0.0032 | - | | 3.5181 | 3300 | 0.0032 | - | | 3.5714 | 3350 | 0.0025 | - | | 3.6247 | 3400 | 0.0029 | - | | 3.6780 | 3450 | 0.0041 | - | | 3.7313 | 3500 | 0.0035 | - | | 3.7846 | 3550 | 0.0018 | - | | 3.8380 | 3600 | 0.0021 | - | | 3.8913 | 3650 | 0.0021 | - | | 3.9446 | 3700 | 0.0019 | - | | 3.9979 | 3750 | 0.0017 | - | | 4.0512 | 3800 | 0.0015 | - | | 4.1045 | 3850 | 0.0018 | - | | 4.1578 | 3900 | 0.0016 | - | | 4.2111 | 3950 | 0.0009 | - | | 4.2644 | 4000 | 0.0009 | - | | 4.3177 | 4050 | 0.0013 | - | | 4.3710 | 4100 | 0.0013 | - | | 4.4243 | 4150 | 0.0004 | - | | 4.4776 | 4200 | 0.0001 | - | | 4.5309 | 4250 | 0.0004 | - | | 4.5842 | 4300 | 0.0005 | - | | 4.6375 | 4350 | 0.0028 | - | | 4.6908 | 4400 | 0.0024 | - | | 4.7441 | 4450 | 0.0024 | - | | 4.7974 | 4500 | 0.0015 | - | | 4.8507 | 4550 | 0.0005 | - | | 4.9041 | 4600 | 0.0006 | - | | 4.9574 | 4650 | 0.0009 | - | | 5.0107 | 4700 | 0.0004 | - | | 5.0640 | 4750 | 0.0005 | - | | 5.1173 | 4800 | 0.0006 | - | | 5.1706 | 4850 | 0.0001 | - | | 5.2239 | 4900 | 0.0002 | - | | 5.2772 | 4950 | 0.0001 | - | | 5.3305 | 5000 | 0.0015 | - | | 5.3838 | 5050 | 0.0009 | - | | 5.4371 | 5100 | 0.0012 | - | | 5.4904 | 5150 | 0.0005 | - | | 5.5437 | 5200 | 0.0002 | - | | 5.5970 | 5250 | 0.0001 | - | | 5.6503 | 5300 | 0.0001 | - | | 5.7036 | 5350 | 0.0001 | - | | 5.7569 | 5400 | 0.0 | - | | 5.8102 | 5450 | 0.0 | - | | 5.8635 | 5500 | 0.0 | - | | 5.9168 | 5550 | 0.0 | - | | 5.9701 | 5600 | 0.0 | - | | 6.0235 | 5650 | 0.0001 | - | | 6.0768 | 5700 | 0.0 | - | | 6.1301 | 5750 | 0.0 | - | | 6.1834 | 5800 | 0.0001 | - | | 6.2367 | 5850 | 0.0001 | - | | 6.2900 | 5900 | 0.0008 | - | | 6.3433 | 5950 | 0.0009 | - | | 6.3966 | 6000 | 0.0007 | - | | 6.4499 | 6050 | 0.0051 | - | | 6.5032 | 6100 | 0.0178 | - | | 6.5565 | 6150 | 0.0118 | - | | 6.6098 | 6200 | 0.0023 | - | | 6.6631 | 6250 | 0.0003 | - | | 6.7164 | 6300 | 0.0002 | - | | 6.7697 | 6350 | 0.0002 | - | | 6.8230 | 6400 | 0.0003 | - | | 6.8763 | 6450 | 0.0006 | - | | 6.9296 | 6500 | 0.0001 | - | | 6.9829 | 6550 | 0.0001 | - | | 7.0362 | 6600 | 0.0 | - | | 7.0896 | 6650 | 0.0 | - | | 7.1429 | 6700 | 0.0 | - | | 7.1962 | 6750 | 0.0 | - | | 7.2495 | 6800 | 0.0 | - | | 7.3028 | 6850 | 0.0 | - | | 7.3561 | 6900 | 0.0 | - | | 7.4094 | 6950 | 0.0 | - | | 7.4627 | 7000 | 0.0 | - | | 7.5160 | 7050 | 0.0 | - | | 7.5693 | 7100 | 0.0 | - | | 7.6226 | 7150 | 0.0 | - | | 7.6759 | 7200 | 0.0008 | - | | 7.7292 | 7250 | 0.0002 | - | | 7.7825 | 7300 | 0.0 | - | | 7.8358 | 7350 | 0.0001 | - | | 7.8891 | 7400 | 0.0 | - | | 7.9424 | 7450 | 0.0 | - | | 7.9957 | 7500 | 0.0 | - | | 8.0490 | 7550 | 0.0 | - | | 8.1023 | 7600 | 0.0 | - | | 8.1557 | 7650 | 0.0 | - | | 8.2090 | 7700 | 0.0 | - | | 8.2623 | 7750 | 0.0 | - | | 8.3156 | 7800 | 0.0003 | - | | 8.3689 | 7850 | 0.0005 | - | | 8.4222 | 7900 | 0.0007 | - | | 8.4755 | 7950 | 0.0022 | - | | 8.5288 | 8000 | 0.0017 | - | | 8.5821 | 8050 | 0.0025 | - | | 8.6354 | 8100 | 0.0023 | - | | 8.6887 | 8150 | 0.0008 | - | | 8.7420 | 8200 | 0.0002 | - | | 8.7953 | 8250 | 0.0008 | - | | 8.8486 | 8300 | 0.0011 | - | | 8.9019 | 8350 | 0.0003 | - | | 8.9552 | 8400 | 0.0 | - | | 9.0085 | 8450 | 0.0002 | - | | 9.0618 | 8500 | 0.0001 | - | | 9.1151 | 8550 | 0.0 | - | | 9.1684 | 8600 | 0.0 | - | | 9.2217 | 8650 | 0.0 | - | | 9.2751 | 8700 | 0.0 | - | | 9.3284 | 8750 | 0.0 | - | | 9.3817 | 8800 | 0.0 | - | | 9.4350 | 8850 | 0.0 | - | | 9.4883 | 8900 | 0.0 | - | | 9.5416 | 8950 | 0.0 | - | | 9.5949 | 9000 | 0.0 | - | | 9.6482 | 9050 | 0.0 | - | | 9.7015 | 9100 | 0.0 | - | | 9.7548 | 9150 | 0.0 | - | | 9.8081 | 9200 | 0.0 | - | | 9.8614 | 9250 | 0.0 | - | | 9.9147 | 9300 | 0.0 | - | | 9.9680 | 9350 | 0.0 | - | | 10.0213 | 9400 | 0.0 | - | | 10.0746 | 9450 | 0.0 | - | | 10.1279 | 9500 | 0.0 | - | | 10.1812 | 9550 | 0.0 | - | | 10.2345 | 9600 | 0.0 | - | | 10.2878 | 9650 | 0.0 | - | | 10.3412 | 9700 | 0.0 | - | | 10.3945 | 9750 | 0.0 | - | | 10.4478 | 9800 | 0.0 | - | | 10.5011 | 9850 | 0.0 | - | | 10.5544 | 9900 | 0.0 | - | | 10.6077 | 9950 | 0.0 | - | | 10.6610 | 10000 | 0.0 | - | | 10.7143 | 10050 | 0.0 | - | | 10.7676 | 10100 | 0.0 | - | | 10.8209 | 10150 | 0.0 | - | | 10.8742 | 10200 | 0.0 | - | | 10.9275 | 10250 | 0.0 | - | | 10.9808 | 10300 | 0.0002 | - | | 11.0341 | 10350 | 0.003 | - | | 11.0874 | 10400 | 0.0074 | - | | 11.1407 | 10450 | 0.0052 | - | | 11.1940 | 10500 | 0.0034 | - | | 11.2473 | 10550 | 0.0038 | - | | 11.3006 | 10600 | 0.0029 | - | | 11.3539 | 10650 | 0.0027 | - | | 11.4072 | 10700 | 0.002 | - | | 11.4606 | 10750 | 0.0013 | - | | 11.5139 | 10800 | 0.002 | - | | 11.5672 | 10850 | 0.0012 | - | | 11.6205 | 10900 | 0.001 | - | | 11.6738 | 10950 | 0.0007 | - | | 11.7271 | 11000 | 0.001 | - | | 11.7804 | 11050 | 0.0006 | - | | 11.8337 | 11100 | 0.0 | - | | 11.8870 | 11150 | 0.0 | - | | 11.9403 | 11200 | 0.0 | - | | 11.9936 | 11250 | 0.0 | - | | 12.0469 | 11300 | 0.0 | - | | 12.1002 | 11350 | 0.0 | - | | 12.1535 | 11400 | 0.0 | - | | 12.2068 | 11450 | 0.0 | - | | 12.2601 | 11500 | 0.0 | - | | 12.3134 | 11550 | 0.0 | - | | 12.3667 | 11600 | 0.0 | - | | 12.4200 | 11650 | 0.0 | - | | 12.4733 | 11700 | 0.0 | - | | 12.5267 | 11750 | 0.0 | - | | 12.5800 | 11800 | 0.0 | - | | 12.6333 | 11850 | 0.0 | - | | 12.6866 | 11900 | 0.0005 | - | | 12.7399 | 11950 | 0.0018 | - | | 12.7932 | 12000 | 0.0006 | - | | 12.8465 | 12050 | 0.0003 | - | | 12.8998 | 12100 | 0.0002 | - | | 12.9531 | 12150 | 0.0 | - | | 13.0064 | 12200 | 0.0 | - | | 13.0597 | 12250 | 0.0 | - | | 13.1130 | 12300 | 0.0 | - | | 13.1663 | 12350 | 0.0 | - | | 13.2196 | 12400 | 0.0 | - | | 13.2729 | 12450 | 0.0 | - | | 13.3262 | 12500 | 0.0 | - | | 13.3795 | 12550 | 0.0 | - | | 13.4328 | 12600 | 0.0 | - | | 13.4861 | 12650 | 0.0 | - | | 13.5394 | 12700 | 0.0 | - | | 13.5928 | 12750 | 0.0 | - | | 13.6461 | 12800 | 0.0 | - | | 13.6994 | 12850 | 0.0 | - | | 13.7527 | 12900 | 0.0 | - | | 13.8060 | 12950 | 0.0 | - | | 13.8593 | 13000 | 0.0 | - | | 13.9126 | 13050 | 0.0001 | - | | 13.9659 | 13100 | 0.0003 | - | | 14.0192 | 13150 | 0.0002 | - | | 14.0725 | 13200 | 0.0 | - | | 14.1258 | 13250 | 0.0 | - | | 14.1791 | 13300 | 0.0001 | - | | 14.2324 | 13350 | 0.0 | - | | 14.2857 | 13400 | 0.0002 | - | | 14.3390 | 13450 | 0.0 | - | | 14.3923 | 13500 | 0.0 | - | | 14.4456 | 13550 | 0.0 | - | | 14.4989 | 13600 | 0.0 | - | | 14.5522 | 13650 | 0.0 | - | | 14.6055 | 13700 | 0.0004 | - | | 14.6588 | 13750 | 0.0007 | - | | 14.7122 | 13800 | 0.0002 | - | | 14.7655 | 13850 | 0.0 | - | | 14.8188 | 13900 | 0.0 | - | | 14.8721 | 13950 | 0.0 | - | | 14.9254 | 14000 | 0.0003 | - | | 14.9787 | 14050 | 0.0002 | - | | 15.0320 | 14100 | 0.0001 | - | | 15.0853 | 14150 | 0.0003 | - | | 15.1386 | 14200 | 0.0 | - | | 15.1919 | 14250 | 0.0 | - | | 15.2452 | 14300 | 0.0 | - | | 15.2985 | 14350 | 0.0 | - | | 15.3518 | 14400 | 0.0 | - | | 15.4051 | 14450 | 0.0 | - | | 15.4584 | 14500 | 0.0 | - | | 15.5117 | 14550 | 0.0002 | - | | 15.5650 | 14600 | 0.0 | - | | 15.6183 | 14650 | 0.0 | - | | 15.6716 | 14700 | 0.0 | - | | 15.7249 | 14750 | 0.0 | - | | 15.7783 | 14800 | 0.0 | - | | 15.8316 | 14850 | 0.0 | - | | 15.8849 | 14900 | 0.0 | - | | 15.9382 | 14950 | 0.0 | - | | 15.9915 | 15000 | 0.0 | - | | 16.0448 | 15050 | 0.0 | - | | 16.0981 | 15100 | 0.0 | - | | 16.1514 | 15150 | 0.0 | - | | 16.2047 | 15200 | 0.0 | - | | 16.2580 | 15250 | 0.0 | - | | 16.3113 | 15300 | 0.0002 | - | | 16.3646 | 15350 | 0.0 | - | | 16.4179 | 15400 | 0.0 | - | | 16.4712 | 15450 | 0.0 | - | | 16.5245 | 15500 | 0.0 | - | | 16.5778 | 15550 | 0.0 | - | | 16.6311 | 15600 | 0.0 | - | | 16.6844 | 15650 | 0.0 | - | | 16.7377 | 15700 | 0.0 | - | | 16.7910 | 15750 | 0.0 | - | | 16.8443 | 15800 | 0.0 | - | | 16.8977 | 15850 | 0.0 | - | | 16.9510 | 15900 | 0.0 | - | | 17.0043 | 15950 | 0.0 | - | | 17.0576 | 16000 | 0.0 | - | | 17.1109 | 16050 | 0.0 | - | | 17.1642 | 16100 | 0.0 | - | | 17.2175 | 16150 | 0.0 | - | | 17.2708 | 16200 | 0.0 | - | | 17.3241 | 16250 | 0.0006 | - | | 17.3774 | 16300 | 0.0018 | - | | 17.4307 | 16350 | 0.002 | - | | 17.4840 | 16400 | 0.0011 | - | | 17.5373 | 16450 | 0.0021 | - | | 17.5906 | 16500 | 0.0018 | - | | 17.6439 | 16550 | 0.0013 | - | | 17.6972 | 16600 | 0.0016 | - | | 17.7505 | 16650 | 0.0018 | - | | 17.8038 | 16700 | 0.0014 | - | | 17.8571 | 16750 | 0.0014 | - | | 17.9104 | 16800 | 0.0017 | - | | 17.9638 | 16850 | 0.001 | - | | 18.0171 | 16900 | 0.001 | - | | 18.0704 | 16950 | 0.0012 | - | | 18.1237 | 17000 | 0.0018 | - | | 18.1770 | 17050 | 0.0018 | - | | 18.2303 | 17100 | 0.0009 | - | | 18.2836 | 17150 | 0.0012 | - | | 18.3369 | 17200 | 0.0011 | - | | 18.3902 | 17250 | 0.0019 | - | | 18.4435 | 17300 | 0.0017 | - | | 18.4968 | 17350 | 0.0012 | - | | 18.5501 | 17400 | 0.0017 | - | | 18.6034 | 17450 | 0.0052 | - | | 18.6567 | 17500 | 0.0087 | - | | 18.7100 | 17550 | 0.0067 | - | | 18.7633 | 17600 | 0.0027 | - | | 18.8166 | 17650 | 0.0022 | - | | 18.8699 | 17700 | 0.0017 | - | | 18.9232 | 17750 | 0.0014 | - | | 18.9765 | 17800 | 0.001 | - | | 19.0299 | 17850 | 0.0006 | - | | 19.0832 | 17900 | 0.0018 | - | | 19.1365 | 17950 | 0.0014 | - | | 19.1898 | 18000 | 0.0002 | - | | 19.2431 | 18050 | 0.0 | - | | 19.2964 | 18100 | 0.0 | - | | 19.3497 | 18150 | 0.0 | - | | 19.4030 | 18200 | 0.0 | - | | 19.4563 | 18250 | 0.0 | - | | 19.5096 | 18300 | 0.0 | - | | 19.5629 | 18350 | 0.0 | - | | 19.6162 | 18400 | 0.0 | - | | 19.6695 | 18450 | 0.0 | - | | 19.7228 | 18500 | 0.0 | - | | 19.7761 | 18550 | 0.0 | - | | 19.8294 | 18600 | 0.0 | - | | 19.8827 | 18650 | 0.0 | - | | 19.9360 | 18700 | 0.0 | - | | 19.9893 | 18750 | 0.0 | - | | 20.0426 | 18800 | 0.0 | - | | 20.0959 | 18850 | 0.0 | - | | 20.1493 | 18900 | 0.0 | - | | 20.2026 | 18950 | 0.0 | - | | 20.2559 | 19000 | 0.0 | - | | 20.3092 | 19050 | 0.0 | - | | 20.3625 | 19100 | 0.0 | - | | 20.4158 | 19150 | 0.0 | - | | 20.4691 | 19200 | 0.0 | - | | 20.5224 | 19250 | 0.0 | - | | 20.5757 | 19300 | 0.0 | - | | 20.6290 | 19350 | 0.0 | - | | 20.6823 | 19400 | 0.0 | - | | 20.7356 | 19450 | 0.0 | - | | 20.7889 | 19500 | 0.0 | - | | 20.8422 | 19550 | 0.0 | - | | 20.8955 | 19600 | 0.0 | - | | 20.9488 | 19650 | 0.0002 | - | | 21.0021 | 19700 | 0.0 | - | | 21.0554 | 19750 | 0.0 | - | | 21.1087 | 19800 | 0.0 | - | | 21.1620 | 19850 | 0.0 | - | | 21.2154 | 19900 | 0.0 | - | | 21.2687 | 19950 | 0.0 | - | | 21.3220 | 20000 | 0.0 | - | | 21.3753 | 20050 | 0.0 | - | | 21.4286 | 20100 | 0.0 | - | | 21.4819 | 20150 | 0.0 | - | | 21.5352 | 20200 | 0.0 | - | | 21.5885 | 20250 | 0.0 | - | | 21.6418 | 20300 | 0.0 | - | | 21.6951 | 20350 | 0.0 | - | | 21.7484 | 20400 | 0.0 | - | | 21.8017 | 20450 | 0.0 | - | | 21.8550 | 20500 | 0.0 | - | | 21.9083 | 20550 | 0.0 | - | | 21.9616 | 20600 | 0.0 | - | | 22.0149 | 20650 | 0.0 | - | | 22.0682 | 20700 | 0.0 | - | | 22.1215 | 20750 | 0.0 | - | | 22.1748 | 20800 | 0.0 | - | | 22.2281 | 20850 | 0.0 | - | | 22.2814 | 20900 | 0.0 | - | | 22.3348 | 20950 | 0.0 | - | | 22.3881 | 21000 | 0.0 | - | | 22.4414 | 21050 | 0.0 | - | | 22.4947 | 21100 | 0.0 | - | | 22.5480 | 21150 | 0.0 | - | | 22.6013 | 21200 | 0.0 | - | | 22.6546 | 21250 | 0.0 | - | | 22.7079 | 21300 | 0.0 | - | | 22.7612 | 21350 | 0.0 | - | | 22.8145 | 21400 | 0.0 | - | | 22.8678 | 21450 | 0.0 | - | | 22.9211 | 21500 | 0.0 | - | | 22.9744 | 21550 | 0.0 | - | | 23.0277 | 21600 | 0.0 | - | | 23.0810 | 21650 | 0.0 | - | | 23.1343 | 21700 | 0.0 | - | | 23.1876 | 21750 | 0.0 | - | | 23.2409 | 21800 | 0.0 | - | | 23.2942 | 21850 | 0.0 | - | | 23.3475 | 21900 | 0.0 | - | | 23.4009 | 21950 | 0.0 | - | | 23.4542 | 22000 | 0.0 | - | | 23.5075 | 22050 | 0.0 | - | | 23.5608 | 22100 | 0.0 | - | | 23.6141 | 22150 | 0.0 | - | | 23.6674 | 22200 | 0.0 | - | | 23.7207 | 22250 | 0.0 | - | | 23.7740 | 22300 | 0.0 | - | | 23.8273 | 22350 | 0.0 | - | | 23.8806 | 22400 | 0.0 | - | | 23.9339 | 22450 | 0.0 | - | | 23.9872 | 22500 | 0.0 | - | | 24.0405 | 22550 | 0.0 | - | | 24.0938 | 22600 | 0.0 | - | | 24.1471 | 22650 | 0.0 | - | | 24.2004 | 22700 | 0.0 | - | | 24.2537 | 22750 | 0.0 | - | | 24.3070 | 22800 | 0.0 | - | | 24.3603 | 22850 | 0.0 | - | | 24.4136 | 22900 | 0.0 | - | | 24.4670 | 22950 | 0.0 | - | | 24.5203 | 23000 | 0.0 | - | | 24.5736 | 23050 | 0.0 | - | | 24.6269 | 23100 | 0.0 | - | | 24.6802 | 23150 | 0.0 | - | | 24.7335 | 23200 | 0.0 | - | | 24.7868 | 23250 | 0.0 | - | | 24.8401 | 23300 | 0.0 | - | | 24.8934 | 23350 | 0.0 | - | | 24.9467 | 23400 | 0.0 | - | | 25.0 | 23450 | 0.0 | - | | 25.0533 | 23500 | 0.0 | - | | 25.1066 | 23550 | 0.0 | - | | 25.1599 | 23600 | 0.0 | - | | 25.2132 | 23650 | 0.0 | - | | 25.2665 | 23700 | 0.0 | - | | 25.3198 | 23750 | 0.0 | - | | 25.3731 | 23800 | 0.0 | - | | 25.4264 | 23850 | 0.0 | - | | 25.4797 | 23900 | 0.0 | - | | 25.5330 | 23950 | 0.0 | - | | 25.5864 | 24000 | 0.0 | - | | 25.6397 | 24050 | 0.0 | - | | 25.6930 | 24100 | 0.0 | - | | 25.7463 | 24150 | 0.0 | - | | 25.7996 | 24200 | 0.0 | - | | 25.8529 | 24250 | 0.0 | - | | 25.9062 | 24300 | 0.0 | - | | 25.9595 | 24350 | 0.0 | - | | 26.0128 | 24400 | 0.0 | - | | 26.0661 | 24450 | 0.0 | - | | 26.1194 | 24500 | 0.0 | - | | 26.1727 | 24550 | 0.0 | - | | 26.2260 | 24600 | 0.0 | - | | 26.2793 | 24650 | 0.0 | - | | 26.3326 | 24700 | 0.0 | - | | 26.3859 | 24750 | 0.0 | - | | 26.4392 | 24800 | 0.0 | - | | 26.4925 | 24850 | 0.0 | - | | 26.5458 | 24900 | 0.0 | - | | 26.5991 | 24950 | 0.0 | - | | 26.6525 | 25000 | 0.0 | - | | 26.7058 | 25050 | 0.0 | - | | 26.7591 | 25100 | 0.0 | - | | 26.8124 | 25150 | 0.0 | - | | 26.8657 | 25200 | 0.0 | - | | 26.9190 | 25250 | 0.0 | - | | 26.9723 | 25300 | 0.0 | - | | 27.0256 | 25350 | 0.0 | - | | 27.0789 | 25400 | 0.0 | - | | 27.1322 | 25450 | 0.0 | - | | 27.1855 | 25500 | 0.0 | - | | 27.2388 | 25550 | 0.0 | - | | 27.2921 | 25600 | 0.0 | - | | 27.3454 | 25650 | 0.0 | - | | 27.3987 | 25700 | 0.0 | - | | 27.4520 | 25750 | 0.0 | - | | 27.5053 | 25800 | 0.0 | - | | 27.5586 | 25850 | 0.0 | - | | 27.6119 | 25900 | 0.0 | - | | 27.6652 | 25950 | 0.0 | - | | 27.7186 | 26000 | 0.0 | - | | 27.7719 | 26050 | 0.0 | - | | 27.8252 | 26100 | 0.0 | - | | 27.8785 | 26150 | 0.0 | - | | 27.9318 | 26200 | 0.0 | - | | 27.9851 | 26250 | 0.0 | - | | 28.0384 | 26300 | 0.0 | - | | 28.0917 | 26350 | 0.0 | - | | 28.1450 | 26400 | 0.0 | - | | 28.1983 | 26450 | 0.0 | - | | 28.2516 | 26500 | 0.0 | - | | 28.3049 | 26550 | 0.0 | - | | 28.3582 | 26600 | 0.0 | - | | 28.4115 | 26650 | 0.0 | - | | 28.4648 | 26700 | 0.0 | - | | 28.5181 | 26750 | 0.0 | - | | 28.5714 | 26800 | 0.0 | - | | 28.6247 | 26850 | 0.0 | - | | 28.6780 | 26900 | 0.0 | - | | 28.7313 | 26950 | 0.0 | - | | 28.7846 | 27000 | 0.0 | - | | 28.8380 | 27050 | 0.0 | - | | 28.8913 | 27100 | 0.0 | - | | 28.9446 | 27150 | 0.0 | - | | 28.9979 | 27200 | 0.0 | - | | 29.0512 | 27250 | 0.0 | - | | 29.1045 | 27300 | 0.0 | - | | 29.1578 | 27350 | 0.0 | - | | 29.2111 | 27400 | 0.0 | - | | 29.2644 | 27450 | 0.0 | - | | 29.3177 | 27500 | 0.0 | - | | 29.3710 | 27550 | 0.0 | - | | 29.4243 | 27600 | 0.0 | - | | 29.4776 | 27650 | 0.0 | - | | 29.5309 | 27700 | 0.0 | - | | 29.5842 | 27750 | 0.0 | - | | 29.6375 | 27800 | 0.0 | - | | 29.6908 | 27850 | 0.0 | - | | 29.7441 | 27900 | 0.0 | - | | 29.7974 | 27950 | 0.0 | - | | 29.8507 | 28000 | 0.0 | - | | 29.9041 | 28050 | 0.0 | - | | 29.9574 | 28100 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.3.1 - Transformers: 4.44.2 - PyTorch: 2.2.0a0+81ea7a4 - Datasets: 3.2.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```