Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +249 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +66 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: mini1013/master_domain
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- metric
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget:
|
13 |
+
- text: WD NEW MY PASSPORT 외장SSD 1TB 외장하드 스마트폰 아이패드 XBOX 세븐컴
|
14 |
+
- text: '2.5인치 HDD SSD 보관 케이스 USB3.0 SATA 어답터 확장 외장하드 케이스 선택1: 2.5인치 HDD SSD 하드 보관함
|
15 |
+
퀄리티어슈어런스코리아'
|
16 |
+
- text: 이지넷 NEXT-350U3 3.5 외장케이스/USB3.0 하드미포함 레알몰
|
17 |
+
- text: NEXT-644DU3 4베이 HDD SSD USB3.0 도킹스테이션 프리줌
|
18 |
+
- text: Seagate IronWolf NAS ST1000VN002 1TB AS3년/공식판매점 (주)픽셀아트 (PIXELART)
|
19 |
+
inference: true
|
20 |
+
model-index:
|
21 |
+
- name: SetFit with mini1013/master_domain
|
22 |
+
results:
|
23 |
+
- task:
|
24 |
+
type: text-classification
|
25 |
+
name: Text Classification
|
26 |
+
dataset:
|
27 |
+
name: Unknown
|
28 |
+
type: unknown
|
29 |
+
split: test
|
30 |
+
metrics:
|
31 |
+
- type: metric
|
32 |
+
value: 0.7785757031717534
|
33 |
+
name: Metric
|
34 |
+
---
|
35 |
+
|
36 |
+
# SetFit with mini1013/master_domain
|
37 |
+
|
38 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
39 |
+
|
40 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
41 |
+
|
42 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
43 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
44 |
+
|
45 |
+
## Model Details
|
46 |
+
|
47 |
+
### Model Description
|
48 |
+
- **Model Type:** SetFit
|
49 |
+
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
|
50 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
51 |
+
- **Maximum Sequence Length:** 512 tokens
|
52 |
+
- **Number of Classes:** 12 classes
|
53 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
54 |
+
<!-- - **Language:** Unknown -->
|
55 |
+
<!-- - **License:** Unknown -->
|
56 |
+
|
57 |
+
### Model Sources
|
58 |
+
|
59 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
60 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
61 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
62 |
+
|
63 |
+
### Model Labels
|
64 |
+
| Label | Examples |
|
65 |
+
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
66 |
+
| 3 | <ul><li>'키오시아 EXCERIA PLUS G3 M.2 NVMe 엄지척스토어'</li><li>'[키오시아] EXCERIA G2 M.2 NVMe (500GB) 주식회사 에티버스이비티'</li><li>'ADATA Ultimate SU650 120GB 밀알시스템'</li></ul> |
|
67 |
+
| 1 | <ul><li>'시놀로지 Expansion Unit DX517 (5베이/하드미포함) 타워형 확장 유닛 DS1817+, DS1517+ (주)비엔지센터'</li><li>'[아이피타임 쇼핑몰] NAS1 dual 1베이 나스 (하드미포함) (주)에이치앤인터내셔널'</li><li>'시놀로지 정품 나스 DS223 2베이 NAS 스토리지 클라우드 서버 구축 시놀로지 NAS DS223 유심홀릭'</li></ul> |
|
68 |
+
| 0 | <ul><li>'씨게이트 바라쿠다 1TB ST1000DM010 SATA3 64M 1테라 하드 오늘 출발 주식회사 호스트시스템'</li><li>'WD BLUE (WD20EZBX) 3.5 SATA HDD (2TB/7200rpm/256MB/SMR) 아이코다(주)'</li><li>'씨게이트 IronWolf 8TB ST8000VN004 (SATA3/7200/256M) (주)조이젠'</li></ul> |
|
69 |
+
| 4 | <ul><li>'Sandisk Extreme Pro CZ880 (128GB) (주)아이티엔조이'</li><li>'Sandisk Cruzer Glide CZ600 (16GB) 컴튜브 주식회사'</li><li>'샌디스크 울트라 핏 USB 3.1 32GB Ultra Fit CZ430 초소형 주식회사 에스티원테크'</li></ul> |
|
70 |
+
| 6 | <ul><li>'NEXT-DC3011TS 1:11 HDD SSD 스마트 하드복사 삭제기 리벤플러스'</li><li>'넥시 NX-802RU31 2베이 RAID 데이터 스토리지 하드 도킹스테이션 (NX768) 대성NETWORK'</li><li>'넥시 USB3.1 C타입 2베이 DAS 데이터 스토리지 NX768 (주)팁스커뮤니케이션즈'</li></ul> |
|
71 |
+
| 11 | <ul><li>'이지넷유비쿼터스 NEXT-215U3 (하드미포함) (주)컴파크씨앤씨'</li><li>'ORICO PHP-35 보라 3.5인치 하드 보호케이스 (주)조이젠'</li><li>'[ORICO] PHP-35 3.5형 하드디스크 보관함 [블루] (주)컴퓨존'</li></ul> |
|
72 |
+
| 2 | <ul><li>'(주)근호컴 [라인업시스템]LS-EXODDC 외장ODD (주)근호컴'</li><li>'[라인업시스템] LANSTAR LS-BRODD 블루레이 외장ODD 주식회사 에티버스이비티'</li><li>'넥스트유 NEXT-200DVD-RW USB3.0 DVD-RW 드라이브 ) (주)인컴씨엔에스'</li></ul> |
|
73 |
+
| 5 | <ul><li>'(주)근호컴 [멜로디]1P 투명 연질 CD/DVD 케이스 (10장) (주)근호컴'</li><li>'HP CD-R 10P / 52X 700MB / 원통케이스 포장 제품 티앤제이 (T&J) 통상'</li><li>'엑토 CD롬컨테이너_50매입 CDC-50K /CD보관함/CD케이스/씨디보관함/씨디케이스/cd정리함 CDC-50K 아이보리 솔로몬샵'</li></ul> |
|
74 |
+
| 9 | <ul><li>'시놀로지 비드라이브 BDS70-1T BeeDrive 1TB 외장SSD 개인 백업허브 정품 솔루션 웍스(Solution Works)'</li><li>'CORSAIR EX100U Portable SSD Type C (1TB) (주)아이티엔조이'</li><li>'ASUS ROG STRIX ARION ESD-S1C M 2 NVMe SSD 외장케이스 (주)아이웍스'</li></ul> |
|
75 |
+
| 8 | <ul><li>'넥스트유 NEXT-651DCU3 도킹스테이션 2베이 (주)수빈인포텍'</li><li>'이지넷유비쿼터스 넥스트유 659CCU3 도킹 스테이션 주식회사 매커드'</li><li>'이지넷유비쿼터스 NEXT-644DU3 4베이 도킹스테이션 에이치엠에스'</li></ul> |
|
76 |
+
| 10 | <ul><li>'USB3.0 4베이 DAS 스토리지 NX770 (주)담다몰'</li><li>'[NEXI] NX-804RU30 외장 케이스 HDD SSD USB 3.0 4베이 하드 도킹스테이션 NX770 주식회사 유진정보통신'</li><li>'[NEXI] 넥시 NX-804RU30 RAID (4베이) [USB3.0] [NX770] [DAS] [하드미포함] (주)컴퓨존'</li></ul> |
|
77 |
+
| 7 | <ul><li>'USB3.0 하드 도킹스테이션 복제 복사 클론 복사기 HDD SSD 2.5인치 3.5인치 듀얼 외장하드 케이스 Q6GCLONE 퀄리티어슈런스'</li><li>'USB3.0 하드 도킹스테이션 복제 복사 클론 복사기 HDD SSD 2.5인치 3.5인치 듀얼 외장하드 케이스 28TB지원 퀄리티어슈런스'</li><li>'NEXT 652DCU3 HDD복제기능탑재/도킹스테이션/2.5인치/3.5인치/백업/클론기능 마하링크'</li></ul> |
|
78 |
+
|
79 |
+
## Evaluation
|
80 |
+
|
81 |
+
### Metrics
|
82 |
+
| Label | Metric |
|
83 |
+
|:--------|:-------|
|
84 |
+
| **all** | 0.7786 |
|
85 |
+
|
86 |
+
## Uses
|
87 |
+
|
88 |
+
### Direct Use for Inference
|
89 |
+
|
90 |
+
First install the SetFit library:
|
91 |
+
|
92 |
+
```bash
|
93 |
+
pip install setfit
|
94 |
+
```
|
95 |
+
|
96 |
+
Then you can load this model and run inference.
|
97 |
+
|
98 |
+
```python
|
99 |
+
from setfit import SetFitModel
|
100 |
+
|
101 |
+
# Download from the 🤗 Hub
|
102 |
+
model = SetFitModel.from_pretrained("mini1013/master_cate_el16")
|
103 |
+
# Run inference
|
104 |
+
preds = model("이지넷 NEXT-350U3 3.5 외장케이스/USB3.0 하드미포함 레알몰")
|
105 |
+
```
|
106 |
+
|
107 |
+
<!--
|
108 |
+
### Downstream Use
|
109 |
+
|
110 |
+
*List how someone could finetune this model on their own dataset.*
|
111 |
+
-->
|
112 |
+
|
113 |
+
<!--
|
114 |
+
### Out-of-Scope Use
|
115 |
+
|
116 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
117 |
+
-->
|
118 |
+
|
119 |
+
<!--
|
120 |
+
## Bias, Risks and Limitations
|
121 |
+
|
122 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
123 |
+
-->
|
124 |
+
|
125 |
+
<!--
|
126 |
+
### Recommendations
|
127 |
+
|
128 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
129 |
+
-->
|
130 |
+
|
131 |
+
## Training Details
|
132 |
+
|
133 |
+
### Training Set Metrics
|
134 |
+
| Training set | Min | Median | Max |
|
135 |
+
|:-------------|:----|:-------|:----|
|
136 |
+
| Word count | 4 | 9.6059 | 20 |
|
137 |
+
|
138 |
+
| Label | Training Sample Count |
|
139 |
+
|:------|:----------------------|
|
140 |
+
| 0 | 50 |
|
141 |
+
| 1 | 50 |
|
142 |
+
| 2 | 50 |
|
143 |
+
| 3 | 50 |
|
144 |
+
| 4 | 50 |
|
145 |
+
| 5 | 50 |
|
146 |
+
| 6 | 50 |
|
147 |
+
| 7 | 3 |
|
148 |
+
| 8 | 50 |
|
149 |
+
| 9 | 50 |
|
150 |
+
| 10 | 7 |
|
151 |
+
| 11 | 50 |
|
152 |
+
|
153 |
+
### Training Hyperparameters
|
154 |
+
- batch_size: (512, 512)
|
155 |
+
- num_epochs: (20, 20)
|
156 |
+
- max_steps: -1
|
157 |
+
- sampling_strategy: oversampling
|
158 |
+
- num_iterations: 40
|
159 |
+
- body_learning_rate: (2e-05, 2e-05)
|
160 |
+
- head_learning_rate: 2e-05
|
161 |
+
- loss: CosineSimilarityLoss
|
162 |
+
- distance_metric: cosine_distance
|
163 |
+
- margin: 0.25
|
164 |
+
- end_to_end: False
|
165 |
+
- use_amp: False
|
166 |
+
- warmup_proportion: 0.1
|
167 |
+
- seed: 42
|
168 |
+
- eval_max_steps: -1
|
169 |
+
- load_best_model_at_end: False
|
170 |
+
|
171 |
+
### Training Results
|
172 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
173 |
+
|:------:|:----:|:-------------:|:---------------:|
|
174 |
+
| 0.0125 | 1 | 0.497 | - |
|
175 |
+
| 0.625 | 50 | 0.2348 | - |
|
176 |
+
| 1.25 | 100 | 0.0733 | - |
|
177 |
+
| 1.875 | 150 | 0.0254 | - |
|
178 |
+
| 2.5 | 200 | 0.0165 | - |
|
179 |
+
| 3.125 | 250 | 0.0122 | - |
|
180 |
+
| 3.75 | 300 | 0.0021 | - |
|
181 |
+
| 4.375 | 350 | 0.0024 | - |
|
182 |
+
| 5.0 | 400 | 0.001 | - |
|
183 |
+
| 5.625 | 450 | 0.0019 | - |
|
184 |
+
| 6.25 | 500 | 0.0002 | - |
|
185 |
+
| 6.875 | 550 | 0.0007 | - |
|
186 |
+
| 7.5 | 600 | 0.0009 | - |
|
187 |
+
| 8.125 | 650 | 0.0002 | - |
|
188 |
+
| 8.75 | 700 | 0.0002 | - |
|
189 |
+
| 9.375 | 750 | 0.0003 | - |
|
190 |
+
| 10.0 | 800 | 0.0002 | - |
|
191 |
+
| 10.625 | 850 | 0.0002 | - |
|
192 |
+
| 11.25 | 900 | 0.0002 | - |
|
193 |
+
| 11.875 | 950 | 0.0001 | - |
|
194 |
+
| 12.5 | 1000 | 0.0001 | - |
|
195 |
+
| 13.125 | 1050 | 0.0001 | - |
|
196 |
+
| 13.75 | 1100 | 0.0001 | - |
|
197 |
+
| 14.375 | 1150 | 0.0001 | - |
|
198 |
+
| 15.0 | 1200 | 0.0001 | - |
|
199 |
+
| 15.625 | 1250 | 0.0001 | - |
|
200 |
+
| 16.25 | 1300 | 0.0001 | - |
|
201 |
+
| 16.875 | 1350 | 0.0001 | - |
|
202 |
+
| 17.5 | 1400 | 0.0001 | - |
|
203 |
+
| 18.125 | 1450 | 0.0001 | - |
|
204 |
+
| 18.75 | 1500 | 0.0001 | - |
|
205 |
+
| 19.375 | 1550 | 0.0001 | - |
|
206 |
+
| 20.0 | 1600 | 0.0001 | - |
|
207 |
+
|
208 |
+
### Framework Versions
|
209 |
+
- Python: 3.10.12
|
210 |
+
- SetFit: 1.1.0.dev0
|
211 |
+
- Sentence Transformers: 3.1.1
|
212 |
+
- Transformers: 4.46.1
|
213 |
+
- PyTorch: 2.4.0+cu121
|
214 |
+
- Datasets: 2.20.0
|
215 |
+
- Tokenizers: 0.20.0
|
216 |
+
|
217 |
+
## Citation
|
218 |
+
|
219 |
+
### BibTeX
|
220 |
+
```bibtex
|
221 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
222 |
+
doi = {10.48550/ARXIV.2209.11055},
|
223 |
+
url = {https://arxiv.org/abs/2209.11055},
|
224 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
225 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
226 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
227 |
+
publisher = {arXiv},
|
228 |
+
year = {2022},
|
229 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
230 |
+
}
|
231 |
+
```
|
232 |
+
|
233 |
+
<!--
|
234 |
+
## Glossary
|
235 |
+
|
236 |
+
*Clearly define terms in order to be accessible across audiences.*
|
237 |
+
-->
|
238 |
+
|
239 |
+
<!--
|
240 |
+
## Model Card Authors
|
241 |
+
|
242 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
243 |
+
-->
|
244 |
+
|
245 |
+
<!--
|
246 |
+
## Model Card Contact
|
247 |
+
|
248 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
249 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mini1013/master_item_el",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"tokenizer_class": "BertTokenizer",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.46.1",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.1",
|
4 |
+
"transformers": "4.46.1",
|
5 |
+
"pytorch": "2.4.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": null,
|
3 |
+
"normalize_embeddings": false
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e43054e0c0a06ac231514e62996b39147567b7045a71cb454519332cf7d1c09
|
3 |
+
size 442494816
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:344975d309e80f6f79602298685d9772e7c284374b70b8c58a976810f0cdf5d1
|
3 |
+
size 74759
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[CLS]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[PAD]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": false,
|
49 |
+
"eos_token": "[SEP]",
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"max_length": 512,
|
52 |
+
"model_max_length": 512,
|
53 |
+
"never_split": null,
|
54 |
+
"pad_to_multiple_of": null,
|
55 |
+
"pad_token": "[PAD]",
|
56 |
+
"pad_token_type_id": 0,
|
57 |
+
"padding_side": "right",
|
58 |
+
"sep_token": "[SEP]",
|
59 |
+
"stride": 0,
|
60 |
+
"strip_accents": null,
|
61 |
+
"tokenize_chinese_chars": true,
|
62 |
+
"tokenizer_class": "BertTokenizer",
|
63 |
+
"truncation_side": "right",
|
64 |
+
"truncation_strategy": "longest_first",
|
65 |
+
"unk_token": "[UNK]"
|
66 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|