mini1013 commited on
Commit
eb180d1
1 Parent(s): 105b22d

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,249 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - metric
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: WD NEW MY PASSPORT 외장SSD 1TB 외장하드 스마트폰 아이패드 XBOX 세븐컴
14
+ - text: '2.5인치 HDD SSD 보관 케이스 USB3.0 SATA 어답터 확장 외장하드 케이스 선택1: 2.5인치 HDD SSD 하드 보관함
15
+ 퀄리티어슈어런스코리아'
16
+ - text: 이지넷 NEXT-350U3 3.5 외장케이스/USB3.0 하드미포함 레알몰
17
+ - text: NEXT-644DU3 4베이 HDD SSD USB3.0 도킹스테이션 프리줌
18
+ - text: Seagate IronWolf NAS ST1000VN002 1TB AS3년/공식판매점 (주)픽셀아트 (PIXELART)
19
+ inference: true
20
+ model-index:
21
+ - name: SetFit with mini1013/master_domain
22
+ results:
23
+ - task:
24
+ type: text-classification
25
+ name: Text Classification
26
+ dataset:
27
+ name: Unknown
28
+ type: unknown
29
+ split: test
30
+ metrics:
31
+ - type: metric
32
+ value: 0.7785757031717534
33
+ name: Metric
34
+ ---
35
+
36
+ # SetFit with mini1013/master_domain
37
+
38
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
39
+
40
+ The model has been trained using an efficient few-shot learning technique that involves:
41
+
42
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
43
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
44
+
45
+ ## Model Details
46
+
47
+ ### Model Description
48
+ - **Model Type:** SetFit
49
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
50
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
51
+ - **Maximum Sequence Length:** 512 tokens
52
+ - **Number of Classes:** 12 classes
53
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
54
+ <!-- - **Language:** Unknown -->
55
+ <!-- - **License:** Unknown -->
56
+
57
+ ### Model Sources
58
+
59
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
60
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
61
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
62
+
63
+ ### Model Labels
64
+ | Label | Examples |
65
+ |:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
66
+ | 3 | <ul><li>'키오시아 EXCERIA PLUS G3 M.2 NVMe 엄지척스토어'</li><li>'[키오시아] EXCERIA G2 M.2 NVMe (500GB) 주식회사 에티버스이비티'</li><li>'ADATA Ultimate SU650 120GB 밀알시스템'</li></ul> |
67
+ | 1 | <ul><li>'시놀로지 Expansion Unit DX517 (5베이/하드미포함) 타워형 확장 유닛 DS1817+, DS1517+ (주)비엔지센터'</li><li>'[아이피타임 쇼핑몰] NAS1 dual 1베이 나스 (하드미포함) (주)에이치앤인터내셔널'</li><li>'시놀로지 정품 나스 DS223 2베이 NAS 스토리지 클라우드 서버 구축 시놀로지 NAS DS223 유심홀릭'</li></ul> |
68
+ | 0 | <ul><li>'씨게이트 바라쿠다 1TB ST1000DM010 SATA3 64M 1테라 하드 오늘 출발 주식회사 호스트시스템'</li><li>'WD BLUE (WD20EZBX) 3.5 SATA HDD (2TB/7200rpm/256MB/SMR) 아이코다(주)'</li><li>'씨게이트 IronWolf 8TB ST8000VN004 (SATA3/7200/256M) (주)조이젠'</li></ul> |
69
+ | 4 | <ul><li>'Sandisk Extreme Pro CZ880 (128GB) (주)아이티엔조이'</li><li>'Sandisk Cruzer Glide CZ600 (16GB) 컴튜브 주식회사'</li><li>'샌디스크 울트라 핏 USB 3.1 32GB Ultra Fit CZ430 초소형 주식회사 에스티원테크'</li></ul> |
70
+ | 6 | <ul><li>'NEXT-DC3011TS 1:11 HDD SSD 스마트 하드복사 삭제기 리벤플러스'</li><li>'넥시 NX-802RU31 2베이 RAID 데이터 스토리지 하드 도킹스테이션 (NX768) 대성NETWORK'</li><li>'넥시 USB3.1 C타입 2베이 DAS 데이터 스토리지 NX768 (주)팁스커뮤니케이션즈'</li></ul> |
71
+ | 11 | <ul><li>'이지넷유비쿼터스 NEXT-215U3 (하드미포함) (주)컴파크씨앤씨'</li><li>'ORICO PHP-35 보라 3.5인치 하드 보호케이스 (주)조이젠'</li><li>'[ORICO] PHP-35 3.5형 하드디스크 보관함 [블루] (주)컴퓨존'</li></ul> |
72
+ | 2 | <ul><li>'(주)근호컴 [라인업시스템]LS-EXODDC 외장ODD (주)근호컴'</li><li>'[라인업시스템] LANSTAR LS-BRODD 블루레이 외장ODD 주식회사 에티버스이비티'</li><li>'넥스트유 NEXT-200DVD-RW USB3.0 DVD-RW 드라이브 ) (주)인컴씨엔에스'</li></ul> |
73
+ | 5 | <ul><li>'(주)근호컴 [멜로디]1P 투명 연질 CD/DVD 케이스 (10장) (주)근호컴'</li><li>'HP CD-R 10P / 52X 700MB / 원통케이스 포장 제품 티앤제이 (T&J) 통상'</li><li>'엑토 CD롬컨테이너_50매입 CDC-50K /CD보관함/CD케이스/씨디보관함/씨디케이스/cd정리함 CDC-50K 아이보리 솔로몬샵'</li></ul> |
74
+ | 9 | <ul><li>'시놀로지 비드라이브 BDS70-1T BeeDrive 1TB 외장SSD 개인 백업허브 정품 솔루션 웍스(Solution Works)'</li><li>'CORSAIR EX100U Portable SSD Type C (1TB) (주)아이티엔조이'</li><li>'ASUS ROG STRIX ARION ESD-S1C M 2 NVMe SSD 외장케이스 (주)아이웍스'</li></ul> |
75
+ | 8 | <ul><li>'넥스트유 NEXT-651DCU3 도킹스테이션 2베이 (주)수빈인포텍'</li><li>'이지넷유비쿼터스 넥스트유 659CCU3 도킹 스테이션 주식회사 매커드'</li><li>'이지넷유비쿼터스 NEXT-644DU3 4베이 도킹스테이션 에이치엠에스'</li></ul> |
76
+ | 10 | <ul><li>'USB3.0 4베이 DAS 스토리지 NX770 (주)담다몰'</li><li>'[NEXI] NX-804RU30 외장 케이스 HDD SSD USB 3.0 4베이 하드 도킹스테이션 NX770 주식회사 유진정보통신'</li><li>'[NEXI] 넥시 NX-804RU30 RAID (4베이) [USB3.0] [NX770] [DAS] [하드미포함] (주)컴퓨존'</li></ul> |
77
+ | 7 | <ul><li>'USB3.0 하드 도킹스테이션 복제 복사 클론 복사기 HDD SSD 2.5인치 3.5인치 듀얼 외장하드 케이스 Q6GCLONE 퀄리티어슈런스'</li><li>'USB3.0 하드 도킹스테이션 복제 복사 클론 복사기 HDD SSD 2.5인치 3.5인치 듀얼 외장하드 케이스 28TB지원 퀄리티어슈런스'</li><li>'NEXT 652DCU3 HDD복제기능탑재/도킹스테이션/2.5인치/3.5인치/백업/클론기능 마하링크'</li></ul> |
78
+
79
+ ## Evaluation
80
+
81
+ ### Metrics
82
+ | Label | Metric |
83
+ |:--------|:-------|
84
+ | **all** | 0.7786 |
85
+
86
+ ## Uses
87
+
88
+ ### Direct Use for Inference
89
+
90
+ First install the SetFit library:
91
+
92
+ ```bash
93
+ pip install setfit
94
+ ```
95
+
96
+ Then you can load this model and run inference.
97
+
98
+ ```python
99
+ from setfit import SetFitModel
100
+
101
+ # Download from the 🤗 Hub
102
+ model = SetFitModel.from_pretrained("mini1013/master_cate_el16")
103
+ # Run inference
104
+ preds = model("이지넷 NEXT-350U3 3.5 외장케이스/USB3.0 하드미포함 레알몰")
105
+ ```
106
+
107
+ <!--
108
+ ### Downstream Use
109
+
110
+ *List how someone could finetune this model on their own dataset.*
111
+ -->
112
+
113
+ <!--
114
+ ### Out-of-Scope Use
115
+
116
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
117
+ -->
118
+
119
+ <!--
120
+ ## Bias, Risks and Limitations
121
+
122
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
123
+ -->
124
+
125
+ <!--
126
+ ### Recommendations
127
+
128
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
129
+ -->
130
+
131
+ ## Training Details
132
+
133
+ ### Training Set Metrics
134
+ | Training set | Min | Median | Max |
135
+ |:-------------|:----|:-------|:----|
136
+ | Word count | 4 | 9.6059 | 20 |
137
+
138
+ | Label | Training Sample Count |
139
+ |:------|:----------------------|
140
+ | 0 | 50 |
141
+ | 1 | 50 |
142
+ | 2 | 50 |
143
+ | 3 | 50 |
144
+ | 4 | 50 |
145
+ | 5 | 50 |
146
+ | 6 | 50 |
147
+ | 7 | 3 |
148
+ | 8 | 50 |
149
+ | 9 | 50 |
150
+ | 10 | 7 |
151
+ | 11 | 50 |
152
+
153
+ ### Training Hyperparameters
154
+ - batch_size: (512, 512)
155
+ - num_epochs: (20, 20)
156
+ - max_steps: -1
157
+ - sampling_strategy: oversampling
158
+ - num_iterations: 40
159
+ - body_learning_rate: (2e-05, 2e-05)
160
+ - head_learning_rate: 2e-05
161
+ - loss: CosineSimilarityLoss
162
+ - distance_metric: cosine_distance
163
+ - margin: 0.25
164
+ - end_to_end: False
165
+ - use_amp: False
166
+ - warmup_proportion: 0.1
167
+ - seed: 42
168
+ - eval_max_steps: -1
169
+ - load_best_model_at_end: False
170
+
171
+ ### Training Results
172
+ | Epoch | Step | Training Loss | Validation Loss |
173
+ |:------:|:----:|:-------------:|:---------------:|
174
+ | 0.0125 | 1 | 0.497 | - |
175
+ | 0.625 | 50 | 0.2348 | - |
176
+ | 1.25 | 100 | 0.0733 | - |
177
+ | 1.875 | 150 | 0.0254 | - |
178
+ | 2.5 | 200 | 0.0165 | - |
179
+ | 3.125 | 250 | 0.0122 | - |
180
+ | 3.75 | 300 | 0.0021 | - |
181
+ | 4.375 | 350 | 0.0024 | - |
182
+ | 5.0 | 400 | 0.001 | - |
183
+ | 5.625 | 450 | 0.0019 | - |
184
+ | 6.25 | 500 | 0.0002 | - |
185
+ | 6.875 | 550 | 0.0007 | - |
186
+ | 7.5 | 600 | 0.0009 | - |
187
+ | 8.125 | 650 | 0.0002 | - |
188
+ | 8.75 | 700 | 0.0002 | - |
189
+ | 9.375 | 750 | 0.0003 | - |
190
+ | 10.0 | 800 | 0.0002 | - |
191
+ | 10.625 | 850 | 0.0002 | - |
192
+ | 11.25 | 900 | 0.0002 | - |
193
+ | 11.875 | 950 | 0.0001 | - |
194
+ | 12.5 | 1000 | 0.0001 | - |
195
+ | 13.125 | 1050 | 0.0001 | - |
196
+ | 13.75 | 1100 | 0.0001 | - |
197
+ | 14.375 | 1150 | 0.0001 | - |
198
+ | 15.0 | 1200 | 0.0001 | - |
199
+ | 15.625 | 1250 | 0.0001 | - |
200
+ | 16.25 | 1300 | 0.0001 | - |
201
+ | 16.875 | 1350 | 0.0001 | - |
202
+ | 17.5 | 1400 | 0.0001 | - |
203
+ | 18.125 | 1450 | 0.0001 | - |
204
+ | 18.75 | 1500 | 0.0001 | - |
205
+ | 19.375 | 1550 | 0.0001 | - |
206
+ | 20.0 | 1600 | 0.0001 | - |
207
+
208
+ ### Framework Versions
209
+ - Python: 3.10.12
210
+ - SetFit: 1.1.0.dev0
211
+ - Sentence Transformers: 3.1.1
212
+ - Transformers: 4.46.1
213
+ - PyTorch: 2.4.0+cu121
214
+ - Datasets: 2.20.0
215
+ - Tokenizers: 0.20.0
216
+
217
+ ## Citation
218
+
219
+ ### BibTeX
220
+ ```bibtex
221
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
222
+ doi = {10.48550/ARXIV.2209.11055},
223
+ url = {https://arxiv.org/abs/2209.11055},
224
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
225
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
226
+ title = {Efficient Few-Shot Learning Without Prompts},
227
+ publisher = {arXiv},
228
+ year = {2022},
229
+ copyright = {Creative Commons Attribution 4.0 International}
230
+ }
231
+ ```
232
+
233
+ <!--
234
+ ## Glossary
235
+
236
+ *Clearly define terms in order to be accessible across audiences.*
237
+ -->
238
+
239
+ <!--
240
+ ## Model Card Authors
241
+
242
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
243
+ -->
244
+
245
+ <!--
246
+ ## Model Card Contact
247
+
248
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
249
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_el",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.46.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.46.1",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e43054e0c0a06ac231514e62996b39147567b7045a71cb454519332cf7d1c09
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:344975d309e80f6f79602298685d9772e7c284374b70b8c58a976810f0cdf5d1
3
+ size 74759
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff