master_cate_el23 / README.md
mini1013's picture
Push model using huggingface_hub.
1372cd7 verified
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 이소닉 MR-120 8GB 동의 화이트선셋
- text: 이소닉 PCM-007 2G 무손실 PCM녹음 간단한사용법 볼펜녹음기 고성능 인터뷰 회의녹음/강의녹음/비밀녹음/녹취기/전화녹음 증거보존
초소형녹음기+USB메모리+MP3 원거리녹음 2GB 진경전자
- text: ICD-PX470 4GB 속기사녹음기 비밀녹음기 장시간 동백
- text: 베스타 전자사전 BK-100 핫앤쿨 (HNC)
- text: TASCAM 4트랙 디지털 오디오 레코더 DR-40X 고운소리사
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.9616204690831557
name: Metric
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 6 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | <ul><li>'레벤트 백색소음기 무드등 RM20 (주)포트리스'</li><li>'레벤트 RM20 LED램프 무드등 백색소음기 수면등 (주)엠글로벌스'</li><li>'레벤트 신생아 백색소음기 화이트노이즈 수유 무드등 RM20 주식회사매니악'</li></ul> |
| 1 | <ul><li>'아이플라이텍 스캔톡 영어 번역기 동시 통역기 AI 인공지능 AI-DSA-001 펫 허브'</li><li>'아이플라이텍 스캔톡 영어 번역기 통역기 AI 인공지능 어학기 (3종 액세사리 무료 ) 그린_액정보호필름/젤리케이스/하드케이스 주식회사 엑스오비'</li><li>'슈피겐 인공지능 음성 번역기 동시 통역기 포켓토크 영어 일본어 중국어 베트남어 해외여행 화이트(eSIM) /ESE00001 주식회사 슈피겐코리아'</li></ul> |
| 0 | <ul><li>'브리츠 BZ-VR1000 보이스 레코드 회의 강의 녹음 주식회사 투데이플러스'</li><li>'머레이 손목 시계형 보이스 레코더 RV-1000 알앤컴퍼니 (R&Company)'</li><li>'이소닉 MR-1000 8GB 장시간 특수녹음기 초소형 보이스레코더 증거 대화 강의 (주)포고텍'</li></ul> |
| 2 | <ul><li>'베스타 한자 일본어 국어 중국어 어학 영영 한영 옥편 영어 사전 전자사전 BK-100 (주)삼신이앤비'</li><li>'베스타 BK-200J 전자사전 일본어특화 전자사전 필기인식 메모리+액정필름+아답타 주식회사 마루엔'</li><li>'베스타 BK-200 8GB 전자사전 번역 회화 주식회사 모핏코리아'</li></ul> |
| 3 | <ul><li>'교보문고 sam 10 Plus 셜크'</li><li>'교보 이북리더기 샘10플러스 sam 10 Plus 프린지'</li><li>'리디페이퍼 4 RIDIPAPER 4 리디 전용 전자책 이북리더기 전자책 리더기 (7인치, wifi, 블루투스, 방수) 블랙 리디 주식회사'</li></ul> |
| 4 | <ul><li>'스코코 리디북스 리디페이퍼 4세대 무광 전신 외부보호필름 3종 (주)스코코'</li><li>'세이펜전용충전기 / 5핀 C타입 분리형충전기 세이펜5핀충전기 (주)세티'</li><li>'스캔톡 EPU 액정 보호 필름 2매입 2매입(벌크용) 주식회사 포유컴퍼니'</li></ul> |
## Evaluation
### Metrics
| Label | Metric |
|:--------|:-------|
| **all** | 0.9616 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_el23")
# Run inference
preds = model("이소닉 MR-120 8GB 동의 화이트선셋")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 3 | 10.4144 | 23 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 50 |
| 1 | 42 |
| 2 | 50 |
| 3 | 11 |
| 4 | 12 |
| 5 | 16 |
### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0345 | 1 | 0.4957 | - |
| 1.7241 | 50 | 0.0279 | - |
| 3.4483 | 100 | 0.0001 | - |
| 5.1724 | 150 | 0.0001 | - |
| 6.8966 | 200 | 0.0001 | - |
| 8.6207 | 250 | 0.0001 | - |
| 10.3448 | 300 | 0.0 | - |
| 12.0690 | 350 | 0.0 | - |
| 13.7931 | 400 | 0.0 | - |
| 15.5172 | 450 | 0.0 | - |
| 17.2414 | 500 | 0.0 | - |
| 18.9655 | 550 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->