|
--- |
|
base_model: mini1013/master_domain |
|
library_name: setfit |
|
metrics: |
|
- metric |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: 이소닉 MR-120 8GB 동의 화이트선셋 |
|
- text: 이소닉 PCM-007 2G 무손실 PCM녹음 간단한사용법 볼펜녹음기 고성능 인터뷰 회의녹음/강의녹음/비밀녹음/녹취기/전화녹음 증거보존 |
|
초소형녹음기+USB메모리+MP3 원거리녹음 2GB 진경전자 |
|
- text: ICD-PX470 4GB 속기사녹음기 비밀녹음기 장시간 동백 |
|
- text: 베스타 전자사전 BK-100 핫앤쿨 (HNC) |
|
- text: TASCAM 4트랙 디지털 오디오 레코더 DR-40X 고운소리사 |
|
inference: true |
|
model-index: |
|
- name: SetFit with mini1013/master_domain |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: metric |
|
value: 0.9616204690831557 |
|
name: Metric |
|
--- |
|
|
|
# SetFit with mini1013/master_domain |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 6 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 5 | <ul><li>'레벤트 백색소음기 무드등 RM20 (주)포트리스'</li><li>'레벤트 RM20 LED램프 무드등 백색소음기 수면등 (주)엠글로벌스'</li><li>'레벤트 신생아 백색소음기 화이트노이즈 수유 무드등 RM20 주식회사매니악'</li></ul> | |
|
| 1 | <ul><li>'아이플라이텍 스캔톡 영어 번역기 동시 통역기 AI 인공지능 AI-DSA-001 펫 허브'</li><li>'아이플라이텍 스캔톡 영어 번역기 통역기 AI 인공지능 어학기 (3종 액세사리 무료 ) 그린_액정보호필름/젤리케이스/하드케이스 주식회사 엑스오비'</li><li>'슈피겐 인공지능 음성 번역기 동시 통역기 포켓토크 영어 일본어 중국어 베트남어 해외여행 화이트(eSIM) /ESE00001 주식회사 슈피겐코리아'</li></ul> | |
|
| 0 | <ul><li>'브리츠 BZ-VR1000 보이스 레코드 회의 강의 녹음 주식회사 투데이플러스'</li><li>'머레이 손목 시계형 보이스 레코더 RV-1000 알앤컴퍼니 (R&Company)'</li><li>'이소닉 MR-1000 8GB 장시간 특수녹음기 초소형 보이스레코더 증거 대화 강의 (주)포고텍'</li></ul> | |
|
| 2 | <ul><li>'베스타 한자 일본어 국어 중국어 어학 영영 한영 옥편 영어 사전 전자사전 BK-100 (주)삼신이앤비'</li><li>'베스타 BK-200J 전자사전 일본어특화 전자사전 필기인식 메모리+액정필름+아답타 주식회사 마루엔'</li><li>'베스타 BK-200 8GB 전자사전 번역 회화 주식회사 모핏코리아'</li></ul> | |
|
| 3 | <ul><li>'교보문고 sam 10 Plus 셜크'</li><li>'교보 이북리더기 샘10플러스 sam 10 Plus 프린지'</li><li>'리디페이퍼 4 RIDIPAPER 4 리디 전용 전자책 이북리더기 전자책 리더기 (7인치, wifi, 블루투스, 방수) 블랙 리디 주식회사'</li></ul> | |
|
| 4 | <ul><li>'스코코 리디북스 리디페이퍼 4세대 무광 전신 외부보호필름 3종 (주)스코코'</li><li>'세이펜전용충전기 / 5핀 C타입 분리형충전기 세이펜5핀충전기 (주)세티'</li><li>'스캔톡 EPU 액정 보호 필름 2매입 2매입(벌크용) 주식회사 포유컴퍼니'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Metric | |
|
|:--------|:-------| |
|
| **all** | 0.9616 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("mini1013/master_cate_el23") |
|
# Run inference |
|
preds = model("이소닉 MR-120 8GB 동의 화이트선셋") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 3 | 10.4144 | 23 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0 | 50 | |
|
| 1 | 42 | |
|
| 2 | 50 | |
|
| 3 | 11 | |
|
| 4 | 12 | |
|
| 5 | 16 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (512, 512) |
|
- num_epochs: (20, 20) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 40 |
|
- body_learning_rate: (2e-05, 2e-05) |
|
- head_learning_rate: 2e-05 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:----:|:-------------:|:---------------:| |
|
| 0.0345 | 1 | 0.4957 | - | |
|
| 1.7241 | 50 | 0.0279 | - | |
|
| 3.4483 | 100 | 0.0001 | - | |
|
| 5.1724 | 150 | 0.0001 | - | |
|
| 6.8966 | 200 | 0.0001 | - | |
|
| 8.6207 | 250 | 0.0001 | - | |
|
| 10.3448 | 300 | 0.0 | - | |
|
| 12.0690 | 350 | 0.0 | - | |
|
| 13.7931 | 400 | 0.0 | - | |
|
| 15.5172 | 450 | 0.0 | - | |
|
| 17.2414 | 500 | 0.0 | - | |
|
| 18.9655 | 550 | 0.0 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.1.0.dev0 |
|
- Sentence Transformers: 3.1.1 |
|
- Transformers: 4.46.1 |
|
- PyTorch: 2.4.0+cu121 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.20.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |