--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 오뚜기 옛날 쇠고기죽 85g (주) 식자재민족 - text: 오뚜기 맛있는 오뚜기밥 210g x 3개입 (주)푸드엔 - text: 햇반소프트밀 비비고 소고기죽 420g 외 35종 소프트밀 누룽지닭백숙 420g 다여기 - text: 오뚜기 전복죽 용기 285g/즉석죽/간편식 스프-보노_VONO 콘스프 55.8g 모두유통주식회사 - text: 꼴떡꼴떡 자체생산 학교앞 밀떡볶이 어묵포함 밀키트 2인분 일반떡2봉+어묵2봉+소스2봉_까르보나라 맛있는꼴떡꼴떡 inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.867680979418027 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 21 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 15.0 | | | 5.0 | | | 7.0 | | | 10.0 | | | 3.0 | | | 0.0 | | | 16.0 | | | 4.0 | | | 20.0 | | | 11.0 | | | 17.0 | | | 18.0 | | | 2.0 | | | 19.0 | | | 14.0 | | | 12.0 | | | 13.0 | | | 6.0 | | | 9.0 | | | 1.0 | | | 8.0 | | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.8677 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_fd4") # Run inference preds = model("오뚜기 옛날 쇠고기죽 85g (주) 식자재민족") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 3 | 9.5276 | 26 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | | 2.0 | 50 | | 3.0 | 50 | | 4.0 | 50 | | 5.0 | 50 | | 6.0 | 50 | | 7.0 | 50 | | 8.0 | 50 | | 9.0 | 50 | | 10.0 | 50 | | 11.0 | 50 | | 12.0 | 50 | | 13.0 | 50 | | 14.0 | 50 | | 15.0 | 50 | | 16.0 | 50 | | 17.0 | 50 | | 18.0 | 50 | | 19.0 | 50 | | 20.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0061 | 1 | 0.4265 | - | | 0.3030 | 50 | 0.3323 | - | | 0.6061 | 100 | 0.234 | - | | 0.9091 | 150 | 0.1134 | - | | 1.2121 | 200 | 0.0641 | - | | 1.5152 | 250 | 0.0509 | - | | 1.8182 | 300 | 0.0435 | - | | 2.1212 | 350 | 0.0309 | - | | 2.4242 | 400 | 0.0191 | - | | 2.7273 | 450 | 0.0163 | - | | 3.0303 | 500 | 0.0215 | - | | 3.3333 | 550 | 0.0161 | - | | 3.6364 | 600 | 0.024 | - | | 3.9394 | 650 | 0.006 | - | | 4.2424 | 700 | 0.0116 | - | | 4.5455 | 750 | 0.0061 | - | | 4.8485 | 800 | 0.0025 | - | | 5.1515 | 850 | 0.001 | - | | 5.4545 | 900 | 0.0003 | - | | 5.7576 | 950 | 0.0002 | - | | 6.0606 | 1000 | 0.0002 | - | | 6.3636 | 1050 | 0.0001 | - | | 6.6667 | 1100 | 0.0002 | - | | 6.9697 | 1150 | 0.0002 | - | | 7.2727 | 1200 | 0.0001 | - | | 7.5758 | 1250 | 0.0001 | - | | 7.8788 | 1300 | 0.0001 | - | | 8.1818 | 1350 | 0.0001 | - | | 8.4848 | 1400 | 0.0001 | - | | 8.7879 | 1450 | 0.0001 | - | | 9.0909 | 1500 | 0.0001 | - | | 9.3939 | 1550 | 0.0001 | - | | 9.6970 | 1600 | 0.0001 | - | | 10.0 | 1650 | 0.0001 | - | | 10.3030 | 1700 | 0.0001 | - | | 10.6061 | 1750 | 0.0001 | - | | 10.9091 | 1800 | 0.0001 | - | | 11.2121 | 1850 | 0.0001 | - | | 11.5152 | 1900 | 0.0001 | - | | 11.8182 | 1950 | 0.0001 | - | | 12.1212 | 2000 | 0.0001 | - | | 12.4242 | 2050 | 0.0001 | - | | 12.7273 | 2100 | 0.0001 | - | | 13.0303 | 2150 | 0.0001 | - | | 13.3333 | 2200 | 0.0001 | - | | 13.6364 | 2250 | 0.0001 | - | | 13.9394 | 2300 | 0.0001 | - | | 14.2424 | 2350 | 0.0 | - | | 14.5455 | 2400 | 0.0 | - | | 14.8485 | 2450 | 0.0001 | - | | 15.1515 | 2500 | 0.0 | - | | 15.4545 | 2550 | 0.0001 | - | | 15.7576 | 2600 | 0.0 | - | | 16.0606 | 2650 | 0.0 | - | | 16.3636 | 2700 | 0.0001 | - | | 16.6667 | 2750 | 0.0001 | - | | 16.9697 | 2800 | 0.0001 | - | | 17.2727 | 2850 | 0.0001 | - | | 17.5758 | 2900 | 0.0001 | - | | 17.8788 | 2950 | 0.0001 | - | | 18.1818 | 3000 | 0.0 | - | | 18.4848 | 3050 | 0.0 | - | | 18.7879 | 3100 | 0.0001 | - | | 19.0909 | 3150 | 0.0 | - | | 19.3939 | 3200 | 0.0001 | - | | 19.6970 | 3250 | 0.0 | - | | 20.0 | 3300 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```