File size: 10,511 Bytes
8fd4aa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 맑은농산 리얼넛츠 베리앤요거트 하루건강견과 20g x 25개입  비트리
- text: 23 햅쌀 골든퀸3호 수향미 특등급 10kg / 순차출고  상상리허설
- text: 산과들에 원데이오리지널 20g x 50개입 선물세트 동의 제이엠세일즈
- text: 구운아몬드 1kg 견과류  에이케이에스앤디 (주) AK인터넷쇼핑몰
- text: 필리핀 세부 건망고 80g 10개-쫀득한망고 말린망고 말린과일  대신유통
inference: true
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: metric
      value: 0.894413407821229
      name: Metric
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 7 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                               |
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.0   | <ul><li>'[채울농산] 국산 장수상황버섯(baumii 최상품) 1개월분 (100g) 1개월분 채울농산'</li><li>'명이나물 2kg 산마늘잎 생명이나물 산나물 생채 명이장아찌 강원도 산마늘 명이 장아찌 2kg 토종농장'</li><li>'풀무원 한끼연두부 오리엔탈유자 (118gX2EA)  (주)풀무원'</li></ul>                                                |
| 2.0   | <ul><li>'커클랜드 건 블루베리 567g 몸에 좋은 건과일 샐러드나 베이킹에 활용 코스트코  마인드 트레이드(mind trade)'</li><li>'웰프레쉬 냉동 블루베리 미국산 1kg  배동바지몰'</li><li>'커클랜드 냉동 블루베리 2.27kg 코스트코 아이스박스 요거트 과일 베리  라미의잡화점'</li></ul>                                                |
| 5.0   | <ul><li>'2022년산 국산 서리태 2kg 검은콩 속청 전남 구례산 볶은 서리태가루 1kg 농업회사법인(주)한결유통'</li><li>'국산 서리태 2kg 검은콩 속청 전남 구례산 국산 서리태(특A) 1kg 농업회사법인(주)한결유통'</li><li>'잔다리마을 특허받은 공법으로 로스팅한 검은콩 서리태 볶음콩 250g / 영양 간식  주식회사 패스트뷰'</li></ul>                      |
| 0.0   | <ul><li>'Sol Simple 태양열 건조 망고 6온스(1팩)_파인애플 시이부동'</li><li>'[푸드] KUNNA 쿤나 건망고 75g 3개 부담없이 젤리 망고 마른 과일 태국 간식 사무실 탕비실 건조과일 말린 망고  에스디지컴퍼니'</li><li>'너츠브라더 촉촉한 건망고 200g 건망고 1kg (주)조하'</li></ul>                                            |
| 4.0   | <ul><li>'[카무트] 고대곡물 카무트 쌀 밀 500g  이푸른(주)'</li><li>'23년 국산 현미 쌀눈 2kg  주식회사 건강중심'</li><li>'[예약구매 할인] 저당 파로 800g 이탈리아 고대곡물 바비조아 저당밥 시리즈 특허공법 저항성전분  주식회사 바비조아'</li></ul>                                                                  |
| 1.0   | <ul><li>'맛있는家 너트리 캘리포니아 생아몬드 500g x 2개  (주)씨제이이엔엠'</li><li>'길림양행 탐스팜 쿠키앤크림 아몬드 190g  바이트리스'</li><li>'머거본 커피땅콩 130g 6개/ 견과류 마른안주 주전부리  보마스'</li></ul>                                                                                   |
| 3.0   | <ul><li>'웰루츠 A등급 냉동 블루베리 1kg 냉동과일 웰루츠 냉동 키위 다이스(중국) 1kg 웰루츠'</li><li>'뉴뜨레 냉동 블루베리 홀 1kg+1kg 무가당 세척블루베리 과일 모음 다이스 퓨레 뉴뜨레 냉동 그린키위 1kg x 2봉 주식회사 보금푸드'</li><li>'코스트코 커클랜드 냉동 블루베리 2.27kg / 아이스박스 포장발송 아이스팩 + 드라이아이스 발송 남들과 다르게'</li></ul> |

## Evaluation

### Metrics
| Label   | Metric |
|:--------|:-------|
| **all** | 0.8944 |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_fd5")
# Run inference
preds = model("구운아몬드 1kg 견과류  에이케이에스앤디 (주) AK인터넷쇼핑몰")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 4   | 10.0886 | 25  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0.0   | 50                    |
| 1.0   | 50                    |
| 2.0   | 50                    |
| 3.0   | 50                    |
| 4.0   | 50                    |
| 5.0   | 50                    |
| 6.0   | 50                    |

### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0182  | 1    | 0.4119        | -               |
| 0.9091  | 50   | 0.2564        | -               |
| 1.8182  | 100  | 0.0407        | -               |
| 2.7273  | 150  | 0.0157        | -               |
| 3.6364  | 200  | 0.014         | -               |
| 4.5455  | 250  | 0.0           | -               |
| 5.4545  | 300  | 0.0           | -               |
| 6.3636  | 350  | 0.0           | -               |
| 7.2727  | 400  | 0.0           | -               |
| 8.1818  | 450  | 0.0001        | -               |
| 9.0909  | 500  | 0.0           | -               |
| 10.0    | 550  | 0.0           | -               |
| 10.9091 | 600  | 0.0           | -               |
| 11.8182 | 650  | 0.0           | -               |
| 12.7273 | 700  | 0.0           | -               |
| 13.6364 | 750  | 0.0           | -               |
| 14.5455 | 800  | 0.0           | -               |
| 15.4545 | 850  | 0.0           | -               |
| 16.3636 | 900  | 0.0           | -               |
| 17.2727 | 950  | 0.0           | -               |
| 18.1818 | 1000 | 0.0           | -               |
| 19.0909 | 1050 | 0.0           | -               |
| 20.0    | 1100 | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->