--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 강아지하네스 원피스 꽃무늬 애견가슴줄 애견 공주옷 옷 고양이 그린 연청색_L 고고마트 - text: 옷 강아지코스튬 강아지 의상 고양이 파티 처키 코스프레 교통경찰 변장_M- 약 2.5-5kg 내 핑크웨일 - text: 찍지마라 강아지옷 강아지 코스튬 해적+더드컨트리 스티커_L(68-88CM)16~25KG 더드컨트리 - text: 강아지패딩 퍼피엔젤 초경량 AIR2 올인원 방수 패딩 남여공용 s 1. AIR2 남여공용_#808 GREEN_S 스탠바이펫 - text: 강아지옷 고양이 봄 여름 가을 원피스 티셔츠 실내복 애견 애완견 반려견 의류 비숑 토이 푸들 말티즈 XS 옵션17. Happy Summer 자수 나시_옐로우_S DOGNY inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.7383331748863375 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 24 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1.0 | | | 21.0 | | | 14.0 | | | 12.0 | | | 13.0 | | | 3.0 | | | 10.0 | | | 0.0 | | | 2.0 | | | 6.0 | | | 25.0 | | | 16.0 | | | 15.0 | | | 22.0 | | | 11.0 | | | 18.0 | | | 17.0 | | | 23.0 | | | 24.0 | | | 9.0 | | | 7.0 | | | 5.0 | | | 4.0 | | | 8.0 | | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.7383 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_lh10") # Run inference preds = model("강아지하네스 원피스 꽃무늬 애견가슴줄 애견 공주옷 옷 고양이 그린 연청색_L 고고마트") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 3 | 10.0792 | 28 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | | 2.0 | 50 | | 3.0 | 50 | | 4.0 | 50 | | 5.0 | 50 | | 6.0 | 50 | | 7.0 | 50 | | 8.0 | 50 | | 9.0 | 50 | | 10.0 | 50 | | 11.0 | 50 | | 12.0 | 50 | | 13.0 | 50 | | 14.0 | 50 | | 15.0 | 50 | | 16.0 | 50 | | 17.0 | 50 | | 18.0 | 50 | | 21.0 | 50 | | 22.0 | 50 | | 23.0 | 50 | | 24.0 | 50 | | 25.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0053 | 1 | 0.4146 | - | | 0.2660 | 50 | 0.3778 | - | | 0.5319 | 100 | 0.315 | - | | 0.7979 | 150 | 0.2096 | - | | 1.0638 | 200 | 0.146 | - | | 1.3298 | 250 | 0.0963 | - | | 1.5957 | 300 | 0.0549 | - | | 1.8617 | 350 | 0.049 | - | | 2.1277 | 400 | 0.0339 | - | | 2.3936 | 450 | 0.0339 | - | | 2.6596 | 500 | 0.0322 | - | | 2.9255 | 550 | 0.0263 | - | | 3.1915 | 600 | 0.0179 | - | | 3.4574 | 650 | 0.0202 | - | | 3.7234 | 700 | 0.0127 | - | | 3.9894 | 750 | 0.0293 | - | | 4.2553 | 800 | 0.0116 | - | | 4.5213 | 850 | 0.0264 | - | | 4.7872 | 900 | 0.012 | - | | 5.0532 | 950 | 0.009 | - | | 5.3191 | 1000 | 0.0139 | - | | 5.5851 | 1050 | 0.0116 | - | | 5.8511 | 1100 | 0.024 | - | | 6.1170 | 1150 | 0.0046 | - | | 6.3830 | 1200 | 0.0046 | - | | 6.6489 | 1250 | 0.0081 | - | | 6.9149 | 1300 | 0.0099 | - | | 7.1809 | 1350 | 0.0108 | - | | 7.4468 | 1400 | 0.0006 | - | | 7.7128 | 1450 | 0.01 | - | | 7.9787 | 1500 | 0.0098 | - | | 8.2447 | 1550 | 0.0099 | - | | 8.5106 | 1600 | 0.0063 | - | | 8.7766 | 1650 | 0.006 | - | | 9.0426 | 1700 | 0.0016 | - | | 9.3085 | 1750 | 0.0054 | - | | 9.5745 | 1800 | 0.0011 | - | | 9.8404 | 1850 | 0.0056 | - | | 10.1064 | 1900 | 0.0095 | - | | 10.3723 | 1950 | 0.0006 | - | | 10.6383 | 2000 | 0.0081 | - | | 10.9043 | 2050 | 0.0002 | - | | 11.1702 | 2100 | 0.0002 | - | | 11.4362 | 2150 | 0.0041 | - | | 11.7021 | 2200 | 0.0021 | - | | 11.9681 | 2250 | 0.0002 | - | | 12.2340 | 2300 | 0.0021 | - | | 12.5 | 2350 | 0.004 | - | | 12.7660 | 2400 | 0.0002 | - | | 13.0319 | 2450 | 0.0002 | - | | 13.2979 | 2500 | 0.0021 | - | | 13.5638 | 2550 | 0.0012 | - | | 13.8298 | 2600 | 0.0038 | - | | 14.0957 | 2650 | 0.0072 | - | | 14.3617 | 2700 | 0.002 | - | | 14.6277 | 2750 | 0.0018 | - | | 14.8936 | 2800 | 0.0018 | - | | 15.1596 | 2850 | 0.0002 | - | | 15.4255 | 2900 | 0.0007 | - | | 15.6915 | 2950 | 0.0003 | - | | 15.9574 | 3000 | 0.0002 | - | | 16.2234 | 3050 | 0.0001 | - | | 16.4894 | 3100 | 0.0001 | - | | 16.7553 | 3150 | 0.0001 | - | | 17.0213 | 3200 | 0.0001 | - | | 17.2872 | 3250 | 0.0001 | - | | 17.5532 | 3300 | 0.0001 | - | | 17.8191 | 3350 | 0.0001 | - | | 18.0851 | 3400 | 0.0001 | - | | 18.3511 | 3450 | 0.0001 | - | | 18.6170 | 3500 | 0.0001 | - | | 18.8830 | 3550 | 0.0001 | - | | 19.1489 | 3600 | 0.0001 | - | | 19.4149 | 3650 | 0.0001 | - | | 19.6809 | 3700 | 0.0001 | - | | 19.9468 | 3750 | 0.0001 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```