mini1013 commited on
Commit
8ae2b06
1 Parent(s): 131597f

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,233 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - metric
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 칸토스 남여 기능성 다이어트 지압슬리퍼 5. 신여성자갈_240 온누리산업
14
+ - text: 국산 헤라칸 케나프 케냐프 발 발바닥 지압 건강 슬리퍼 실내화 연핑크(M) 예일마켓
15
+ - text: 풀리오 종아리마사지기 V3 디와이shop
16
+ - text: 풋 브러쉬 발각질 제거 마사지 큐오랩
17
+ - text: 마사지 실내 발지압매트 돌지압판 50x200CM보보보생꽃롱 도치글로벌
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: metric
31
+ value: 0.9710123383380407
32
+ name: Metric
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 8 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 6.0 | <ul><li>'자갈 매트 지압판 조약돌 발판 지압길 지압 발매트 40X60CM 컬러풀 에이알'</li><li>'뽀송뽀송 메모리폼 발닦개매트 욕실 주방 발매트 러그 대형 면 화장실 라지 50X80_레드 시그나몰'</li><li>'굳은 살 걱정없는 특허기술 헬스핀 발 지압매트 지압판 부모님 선물 효도 헬스핀 운동 기획상품_핑크 붐코리아'</li></ul> |
66
+ | 1.0 | <ul><li>'김수자 엔젤 종아리 발마사지기 다리안마기 GKM-1004 닥터PLUS'</li><li>'듀플렉스 쎄라웨어 온열찜질 발마사지기 DP-FM700 신인선'</li><li>'7만원대 추가할인 여름휴가필수 [ ]업그레이드 3세대 스마트센서 종아리부터 허벅지까지 붓기 싹!! 무선다리마사지기 SR-S1+슬리밍삭스(옐로우) 수련닷컴'</li></ul> |
67
+ | 5.0 | <ul><li>'발각질양말 실리콘 패드 발보습 양말 발각질 케어 화이트 석진케이 주식회사'</li><li>'[BZJKWP4I_49]irbrush 뒤꿈치 패드 풋케어 발각질 3.블랙(5mm)FREE 롯데아이몰'</li><li>'일상공감 보드랍족 발보호대 1+1 뒤꿈치 발각질 보습풋패드 양말 발보호대 1+1_스킨 L 1쌍+화이트 M 1쌍 주식회사 이공구오'</li></ul> |
68
+ | 4.0 | <ul><li>'쾌발Q 60매 발냄새제거제/유해세균억제/무좀/발관리 해피MART'</li><li>'편백나무 슈즈프레쉬 신발장 옷장 탈취 발냄새제거 제습 방향효과 크레비스'</li><li>'[공식수입] 발냄새제거제 그랜즈레미디 페퍼민트향 cscosmetics'</li></ul> |
69
+ | 0.0 | <ul><li>'평발 아치 슬리퍼 발바닥 통증 완화 아치슬리퍼 사파이어 블루_290 탱큐'</li><li>'통굽 지압슬리퍼 실내화 층간소음방지 미끄럼방��� 욕실화 도톨 지압 옐로우 39-40 9025 파인메탈릭'</li><li>'[낫소]낫소 지압2 슬리퍼 아이보리/230 패션플러스'</li></ul> |
70
+ | 3.0 | <ul><li>'바렌 매직 스텐 양면 프로 발각질제거기 포유어뷰티'</li><li>'바렌 패디퍼펙트 전동 발각질 제거기 퍼플에디션 발 뒤꿈치 발바닥 굳은살 제거 패디플래닝 1세트(사은품 증정)_리뷰약속 x (주)마르스랩스'</li><li>'오제끄 실크풋 버퍼 단품 인앤인마켓'</li></ul> |
71
+ | 7.0 | <ul><li>'[리퍼브]굿프렌드 밸런스휴 건식좌훈족욕기 GOOD-F5 리퍼브 건식좌훈족욕기 GOOD-F5 주식회사 굿테크'</li><li>'GSN-1610 편백나무 원적외선 건식 좌훈기+족욕기 겸용 MinSellAmount 온유어핏'</li><li>'B 굿프렌드 캐나다산 소나무 원목 스마트 건식족욕기 GOOD-F4 휴게실 가정용 마켓뷰'</li></ul> |
72
+ | 2.0 | <ul><li>'염색도구세트 셀프 키트 볼 브러쉬 가정용 헤어 브러시 빗 머리 모발 간편 07.Aeib 염색빗세트3P_본상품선택 주식회사유마켓'</li><li>'OC1242 손가락 발가락 관절보호 보습 실리콘 골무18종 통기화이트S(12425) 테익디스(TAKE THIS)'</li><li>'OC1242 손가락 발가락 보호 보습 실리콘 골무18종 실리콘골무 구멍뚫린골무 발가락 보호 골무스킨톤L(11033) 제이한 주식회사'</li></ul> |
73
+
74
+ ## Evaluation
75
+
76
+ ### Metrics
77
+ | Label | Metric |
78
+ |:--------|:-------|
79
+ | **all** | 0.9710 |
80
+
81
+ ## Uses
82
+
83
+ ### Direct Use for Inference
84
+
85
+ First install the SetFit library:
86
+
87
+ ```bash
88
+ pip install setfit
89
+ ```
90
+
91
+ Then you can load this model and run inference.
92
+
93
+ ```python
94
+ from setfit import SetFitModel
95
+
96
+ # Download from the 🤗 Hub
97
+ model = SetFitModel.from_pretrained("mini1013/master_cate_lh11")
98
+ # Run inference
99
+ preds = model("풋 브러쉬 발각질 제거 마사지 큐오랩")
100
+ ```
101
+
102
+ <!--
103
+ ### Downstream Use
104
+
105
+ *List how someone could finetune this model on their own dataset.*
106
+ -->
107
+
108
+ <!--
109
+ ### Out-of-Scope Use
110
+
111
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
112
+ -->
113
+
114
+ <!--
115
+ ## Bias, Risks and Limitations
116
+
117
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
118
+ -->
119
+
120
+ <!--
121
+ ### Recommendations
122
+
123
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
124
+ -->
125
+
126
+ ## Training Details
127
+
128
+ ### Training Set Metrics
129
+ | Training set | Min | Median | Max |
130
+ |:-------------|:----|:-------|:----|
131
+ | Word count | 3 | 9.9325 | 21 |
132
+
133
+ | Label | Training Sample Count |
134
+ |:------|:----------------------|
135
+ | 0.0 | 50 |
136
+ | 1.0 | 50 |
137
+ | 2.0 | 50 |
138
+ | 3.0 | 50 |
139
+ | 4.0 | 50 |
140
+ | 5.0 | 50 |
141
+ | 6.0 | 50 |
142
+ | 7.0 | 50 |
143
+
144
+ ### Training Hyperparameters
145
+ - batch_size: (512, 512)
146
+ - num_epochs: (20, 20)
147
+ - max_steps: -1
148
+ - sampling_strategy: oversampling
149
+ - num_iterations: 40
150
+ - body_learning_rate: (2e-05, 2e-05)
151
+ - head_learning_rate: 2e-05
152
+ - loss: CosineSimilarityLoss
153
+ - distance_metric: cosine_distance
154
+ - margin: 0.25
155
+ - end_to_end: False
156
+ - use_amp: False
157
+ - warmup_proportion: 0.1
158
+ - seed: 42
159
+ - eval_max_steps: -1
160
+ - load_best_model_at_end: False
161
+
162
+ ### Training Results
163
+ | Epoch | Step | Training Loss | Validation Loss |
164
+ |:-------:|:----:|:-------------:|:---------------:|
165
+ | 0.0159 | 1 | 0.4383 | - |
166
+ | 0.7937 | 50 | 0.2003 | - |
167
+ | 1.5873 | 100 | 0.0636 | - |
168
+ | 2.3810 | 150 | 0.0158 | - |
169
+ | 3.1746 | 200 | 0.0239 | - |
170
+ | 3.9683 | 250 | 0.0153 | - |
171
+ | 4.7619 | 300 | 0.0004 | - |
172
+ | 5.5556 | 350 | 0.0023 | - |
173
+ | 6.3492 | 400 | 0.0005 | - |
174
+ | 7.1429 | 450 | 0.0002 | - |
175
+ | 7.9365 | 500 | 0.0001 | - |
176
+ | 8.7302 | 550 | 0.0001 | - |
177
+ | 9.5238 | 600 | 0.0001 | - |
178
+ | 10.3175 | 650 | 0.0001 | - |
179
+ | 11.1111 | 700 | 0.0001 | - |
180
+ | 11.9048 | 750 | 0.0001 | - |
181
+ | 12.6984 | 800 | 0.0 | - |
182
+ | 13.4921 | 850 | 0.0001 | - |
183
+ | 14.2857 | 900 | 0.0001 | - |
184
+ | 15.0794 | 950 | 0.0001 | - |
185
+ | 15.8730 | 1000 | 0.0 | - |
186
+ | 16.6667 | 1050 | 0.0001 | - |
187
+ | 17.4603 | 1100 | 0.0 | - |
188
+ | 18.2540 | 1150 | 0.0001 | - |
189
+ | 19.0476 | 1200 | 0.0001 | - |
190
+ | 19.8413 | 1250 | 0.0 | - |
191
+
192
+ ### Framework Versions
193
+ - Python: 3.10.12
194
+ - SetFit: 1.1.0.dev0
195
+ - Sentence Transformers: 3.1.1
196
+ - Transformers: 4.46.1
197
+ - PyTorch: 2.4.0+cu121
198
+ - Datasets: 2.20.0
199
+ - Tokenizers: 0.20.0
200
+
201
+ ## Citation
202
+
203
+ ### BibTeX
204
+ ```bibtex
205
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
206
+ doi = {10.48550/ARXIV.2209.11055},
207
+ url = {https://arxiv.org/abs/2209.11055},
208
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
209
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
210
+ title = {Efficient Few-Shot Learning Without Prompts},
211
+ publisher = {arXiv},
212
+ year = {2022},
213
+ copyright = {Creative Commons Attribution 4.0 International}
214
+ }
215
+ ```
216
+
217
+ <!--
218
+ ## Glossary
219
+
220
+ *Clearly define terms in order to be accessible across audiences.*
221
+ -->
222
+
223
+ <!--
224
+ ## Model Card Authors
225
+
226
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
227
+ -->
228
+
229
+ <!--
230
+ ## Model Card Contact
231
+
232
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
233
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_lh",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.46.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.46.1",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:663e596f9abcf09e51ee0d121c67f287ee4accf6fdd03983ae9edcd293a9258a
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05b7f515afeda658e07d0062f8b9d3db28ef486ad2b05ddd7ee396fa1297773d
3
+ size 50087
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff