File size: 14,521 Bytes
b0806aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 마사지  경락 잠옷 피부샵 세트 호텔 아로마 스파 HFG 그레이 남성_XXL 민물유통
- text: 바스템 리워터 히든커버 필터 샤워기 리워터 히든커버 교체필터 4개입 바스템
- text: 어메니티타올 환갑 칠순 팔순 구순 회갑 고희 답례품 40 무형광 주방 고리수건 자수 화이트_동백 어메니티타올
- text: '[추가 5%할인] 바디럽 비타필터 2개 (녹물염소제거/보습효과/샤워기필터/비타민필터/비타샤워기) [NEW] 민티시트러스 NEW  우디오렌지_NEW  퓨어소피
    메가글로벌002'
- text: 깔끔디자인 욕실수건걸이 6 pcs 세트 가정용 워시 브러쉬  액체 블랙수건걸이 컵세트 빨간 리마108
inference: true
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: metric
      value: 0.6881059449647262
      name: Metric
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 12 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                                                     |
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10.0  | <ul><li>'홈사우나 전신 스팀 건식 훈증 노폐물배출 2인용 풀세트핑크 다이버릿'</li><li>'KBT201S 만성피로 회복 혈액순환 촉진 편백 고급형 건식 반신욕기 미편백 편백 고급형 명성유통상사'</li><li>'미편백 KBT201S 만성피로 회복 혈액순환 촉진 편백 고급형 건식 반신욕기 원목 고급형 제일유통상사'</li></ul>                                                                              |
| 8.0   | <ul><li>'거울 욕실 수납장 캐비닛 스마트 화장실 선반 방수 저장 벽걸이 115 A형 문라이트 화이트 70CM 일반 거울 마켓에스'</li><li>'1P 매직 걸이 후크 투명 접착식 무타공 액자 선반  열두번째모닝'</li><li>'참생활 스텐 기둥식 코너선반 욕조형 3단 욕실선반 화장실선반 스텐 기둥식 일자선반_욕조형 600 3단 형진산업'</li></ul>                                                                |
| 1.0   | <ul><li>'비데 휴대용 아기 비대 여행용 환자용 휴대용비데 워시케어 메리머치(Merry Merch)'</li><li>'쿠쿠 인스퓨어 CBT-G1032MW 자가설치 MinSellAmount 꿀디'</li><li>'노비타 슈퍼슬림비데 BD-H350 (탈취/건조/자동노즐세척) 설치의뢰(현장2만원지급) NS몰'</li></ul>                                                                                      |
| 6.0   | <ul><li>'[11월기획]튜브스퀴저 스탠드형 돌돌이 치약짜개 디스펜서_9850CkY_다판다차차 기획  탄산뱅크'</li><li>'마비스 디스펜서 (스퀴저)  (주)시담'</li><li>'규조토 트레이 S(11.5x7.5cm)_오프화이트 주식회사 이클레틱'</li></ul>                                                                                                                   |
| 5.0   | <ul><li>'단차해소기 높이맞춤 현관 경사판 방문턱 발판 패드 CA 피터스토어'</li><li>'나무발판 원목 현관 욕실 발판 원목_100 x 30 우드플러스'</li><li>'심플 발판 욕 실 다용도 풋페달 발 받침대 거치대 KK705 다리불편 디딤대 욕실 발 세척 가드 홉포엘'</li></ul>                                                                                                    |
| 9.0   | <ul><li>'3M 슬림 베이킹소다 크린스틱 시트타입 디스펜서팩(30매 포함) + 60매 / 욕실청소 화장실청소 스카치브라이트 1. 디스펜서팩(30매 포함) + 리필 60매 1. 디스펜서팩(30매 포함) + 리필 60매 메가글로벌002'</li><li>'플루브 화장실 줄눈시공 코팅제 셀프 리모델링 변기테두리용_화이트진주펄_45g 플루브엔트'</li><li>'co/(10M)막힌 배수구 시원하게 스프링 뚫어뻥 관통기통 스네이크 좋은상품  벤타마켓'</li></ul>        |
| 4.0   | <ul><li>'1+1 등원 핸드타올 거위 펭귄 타월 핵인싸템 귀염뽀짝 어린이집수건 01_1+1 등원 핸드타올 거위 펭귄 타월_거위 그레이+펭귄 핑크 주식회사 코윈커머스'</li><li>'태슬원피스 주방타올 (옷걸이포함) 차콜 코지로그'</li><li>'바캉스 Best 특대형 비치타올 블루라군 180cm x 100cm  케이투나인'</li></ul>                                                                         |
| 0.0   | <ul><li>'질레트 비너스 엑스트라 스무스 면도날 4입 비너스 엑스트라 스무스 면도날 4입 G107  신세계몰'</li><li>'[추석맞이 15%] 도루코 페이스5스타일 면도날 세트 (12입) / 5중날/호환가능 베이직 스타터킷 면도세트 샵피온'</li><li>'[쉬크] 이그젝타2 센서티브 휴대용면도기 10개입  신세계몰'</li></ul>                                                                            |
| 7.0   | <ul><li>'손잡이 쌀 세척볼 (3color) 과일 야채 채반 바가지 바스켓 물빠짐 블랙 쭌쭌형제'</li><li>'바이칸 원형스쿠프 바가지 사료삽 스쿱 100도소독가능 01) 1L_파랑(56813) 유니365'</li><li>'닥터세닥 미니스 여행용 세트 여성용  리빙어센틱'</li></ul>                                                                                                      |
| 11.0  | <ul><li>'화이트 심플 모던 욕실 세면대 미니세면대 간이 하부장 다용도실 손빨래 28 70x48 바닥 흰색(도어 포함) - 냉 한빛테크(Hanbit Tech)'</li><li>'소변기 남자 화장실 세라믹 벽걸이 욕실 공원 양변기 야외 요강 F.와이어드로잉8309소변기+강화유리은폐센서 데이셀'</li><li>'화이트 심플 모던 욕실 세면대 미니세면대 간이 하부장 다용도실 손빨래 6 51x36 바닥 흰색(문 없음) - 온수 한빛테크(Hanbit Tech)'</li></ul> |
| 3.0   | <ul><li>'소변기감지기 자바TU100 자동 소변기 센서 세척밸브  조아스'</li><li>'싱크대배수구교체 싱크대배수통 배수구세트 JUS 대형 은항균_막힘너트(OF없음) HOMETOOL'</li><li>'듀벨 수도애 정수키트 리필 필터 10개 2 정수키트용 리필필터 20개 주식회사 듀벨'</li></ul>                                                                                               |
| 2.0   | <ul><li>'orb 오브 다용도 바구니 L/ 수납 정리 편리 목욕 장난감 피크닉 다용도 화이트 에이치샵'</li><li>'먼작귀 아크릴 캔디 스탠드-24EA  네쿠네쿠'</li><li>'친구결혼선물 로브가운 실크샤무즈 롱 남자/여자 나이트가운 로브_블랙100[XL] 매구맵시'</li></ul>                                                                                                       |

## Evaluation

### Metrics
| Label   | Metric |
|:--------|:-------|
| **all** | 0.6881 |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_lh18")
# Run inference
preds = model("바스템 리워터 히든커버 필터 샤워기 리워터 히든커버 교체필터 4개입 바스템")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 3   | 10.42  | 26  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0.0   | 50                    |
| 1.0   | 50                    |
| 2.0   | 50                    |
| 3.0   | 50                    |
| 4.0   | 50                    |
| 5.0   | 50                    |
| 6.0   | 50                    |
| 7.0   | 50                    |
| 8.0   | 50                    |
| 9.0   | 50                    |
| 10.0  | 50                    |
| 11.0  | 50                    |

### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0106  | 1    | 0.4109        | -               |
| 0.5319  | 50   | 0.305         | -               |
| 1.0638  | 100  | 0.2044        | -               |
| 1.5957  | 150  | 0.0728        | -               |
| 2.1277  | 200  | 0.0314        | -               |
| 2.6596  | 250  | 0.0054        | -               |
| 3.1915  | 300  | 0.0036        | -               |
| 3.7234  | 350  | 0.0103        | -               |
| 4.2553  | 400  | 0.0047        | -               |
| 4.7872  | 450  | 0.0002        | -               |
| 5.3191  | 500  | 0.0001        | -               |
| 5.8511  | 550  | 0.0001        | -               |
| 6.3830  | 600  | 0.0001        | -               |
| 6.9149  | 650  | 0.0001        | -               |
| 7.4468  | 700  | 0.0001        | -               |
| 7.9787  | 750  | 0.0001        | -               |
| 8.5106  | 800  | 0.0001        | -               |
| 9.0426  | 850  | 0.0           | -               |
| 9.5745  | 900  | 0.0001        | -               |
| 10.1064 | 950  | 0.0001        | -               |
| 10.6383 | 1000 | 0.0           | -               |
| 11.1702 | 1050 | 0.0           | -               |
| 11.7021 | 1100 | 0.0           | -               |
| 12.2340 | 1150 | 0.0           | -               |
| 12.7660 | 1200 | 0.0001        | -               |
| 13.2979 | 1250 | 0.0           | -               |
| 13.8298 | 1300 | 0.0           | -               |
| 14.3617 | 1350 | 0.0           | -               |
| 14.8936 | 1400 | 0.0001        | -               |
| 15.4255 | 1450 | 0.0           | -               |
| 15.9574 | 1500 | 0.0           | -               |
| 16.4894 | 1550 | 0.0           | -               |
| 17.0213 | 1600 | 0.0           | -               |
| 17.5532 | 1650 | 0.0           | -               |
| 18.0851 | 1700 | 0.0001        | -               |
| 18.6170 | 1750 | 0.0           | -               |
| 19.1489 | 1800 | 0.0           | -               |
| 19.6809 | 1850 | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->