File size: 9,354 Bytes
e4800ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: '[저소음 미세입자] 오므론 네블라이저 NE-C803 꿈꾸는약국'
- text: 일동제약 케어리브 밴드 M 중형 10매입 약국용 3_중형 M 50매 이웃사랑팜
- text: 퀸사이즈 병원침대/환자용침대 매트리스/고탄성 병원용 접이식 마사지 지압 의료용 매트 두께 7cm_베이지색 평매트리스_1400mm X
2000mm(더블사이즈) 메디칼베드마트
- text: 일동제약 케어리브 밴드 중형 M 50매입 하이맘(중외제약)_하이맘밴드 아쿠아 혼합형 12매 테크노 제일약국
- text: '[하프클럽/제일케어]웰팜스 의료기기 - 의료용 가위 1개 하프클럽'
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.9570833333333333
name: Metric
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 5 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.0 | <ul><li>'세운 네라톤카테타 #1116 라텍스 멸균 100개 팩 6번 12fr 4.0mm0 트리비즈니스'</li><li>'세운 바로박(Barovac) PS200C 단위:1개 (주)엠디오씨'</li><li>'의무실 성인용 고무밴드 네블라이저 마스크 호흡기 흡입마스크 기관지 인사이트쇼핑몰'</li></ul> |
| 1.0 | <ul><li>'JW중외제약 하이맘밴드 프리미엄 2매 이지덤(대웅제약)_이지덤씬 2매(+가위) 테크노 제일약국'</li><li>'메디폼 친수성 폼드레싱 10x10cm (5mm) (2mm) 10매입 1박스 5mm 주식회사 엠퍼러'</li><li>'메나리니 더마틱스 울트라 겔 15g 1개. 릴리뷰티'</li></ul> |
| 0.0 | <ul><li>'약국 에탄올스왑 일회용 알콜솜 에프에이 이올스왑 알콜스왑 소독솜 1박스 다팜메디'</li><li>'[유한양행] 해피홈 소독용 알콜스왑알콜솜 100매입 2개 [0001]기본상품 CJONSTYLE'</li><li>'일회용 알콜솜 알콜스왑 소독 약국 바른케어 개별포장100매 바른케어 플러스 알콜솜 100매 로그엠(LOGM)'</li></ul> |
| 4.0 | <ul><li>'가주 비멸균 설압자 1통(100개) 혀누르개 목설압자 의료용 병원용 더블세이프 MinSellAmount 이원헬스케어'</li><li>'의료용 겸자 12.5cm /곡 모스키토 켈리 포셉 SJ헬스케어'</li><li>'개부밧드6절(뚜껑있는밧드)소독통/개무밧드/사각트레이/트레이밧드/거어즈캔 신동방메디칼'</li></ul> |
| 3.0 | <ul><li>'일회용 베드 위생시트 부직포시트 침대커버 1롤 50장 80x180cm 비방수(고급형) 80x180 50장/롤 심비오시스'</li><li>'부직포자루,육수보자기,다시백,거름망 45x50-300장 봉제 지우씨'</li><li>'병원침대/환자용침대 매트리스/고탄성 접이식 마사지 지압 의료용 매트 두께 9cm_밤색 평매트리스_900mm X 1900mm 메디칼베드마트'</li></ul> |
## Evaluation
### Metrics
| Label | Metric |
|:--------|:-------|
| **all** | 0.9571 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_lh19")
# Run inference
preds = model("[저소음 미세입자] 오므론 네블라이저 NE-C803 꿈꾸는약국")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 3 | 10.084 | 20 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 50 |
| 1.0 | 50 |
| 2.0 | 50 |
| 3.0 | 50 |
| 4.0 | 50 |
### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-----:|:----:|:-------------:|:---------------:|
| 0.025 | 1 | 0.4162 | - |
| 1.25 | 50 | 0.2435 | - |
| 2.5 | 100 | 0.0066 | - |
| 3.75 | 150 | 0.0054 | - |
| 5.0 | 200 | 0.0001 | - |
| 6.25 | 250 | 0.0 | - |
| 7.5 | 300 | 0.0 | - |
| 8.75 | 350 | 0.0 | - |
| 10.0 | 400 | 0.0 | - |
| 11.25 | 450 | 0.0 | - |
| 12.5 | 500 | 0.0 | - |
| 13.75 | 550 | 0.0 | - |
| 15.0 | 600 | 0.0 | - |
| 16.25 | 650 | 0.0 | - |
| 17.5 | 700 | 0.0 | - |
| 18.75 | 750 | 0.0 | - |
| 20.0 | 800 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |