--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 전기 스팀해빙기 수도 배관 동파방지 고온 공구 스팀 고성능 고압 2500W 디지털 7점 세트 2500W 산업용 온도조절 7종 세트+수납함 하니빌리지 - text: 스텐 나사못 목재 피스 목공 철판 나사 직결 와샤머리 4-13(25개) 11. 스텐 트라스머리 볼트_M5-40 (5개) 리더화스너 - text: 안전봉투 택배 포장 뽁뽁이 0호 100X100+40 10매 소량 주황 [비접착] 투명 에어캡 봉투 - 0.2T_18호 250x350 10매 주식회사 이고다(IGODA CO. ,Ltd.) - text: 토네이도 다이아몬드 융착코어비트 폴리싱 대리석 천공 TQ5 57_TTC 17 주식회사 투엑스 - text: 킹토니 핸드소켓 복스알 233504M 2. 롱핸드소켓(육각)_2-21 323513M 3/8x13mm 제로나인 inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.6113686482182797 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 19 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1.0 | | | 18.0 | | | 5.0 | | | 4.0 | | | 14.0 | | | 8.0 | | | 0.0 | | | 6.0 | | | 12.0 | | | 11.0 | | | 2.0 | | | 15.0 | | | 16.0 | | | 3.0 | | | 7.0 | | | 17.0 | | | 9.0 | | | 10.0 | | | 13.0 | | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.6114 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_lh2") # Run inference preds = model("토네이도 다이아몬드 융착코어비트 폴리싱 대리석 천공 TQ5 57_TTC 17 주식회사 투엑스") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 3 | 10.7474 | 27 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | | 2.0 | 50 | | 3.0 | 50 | | 4.0 | 50 | | 5.0 | 50 | | 6.0 | 50 | | 7.0 | 50 | | 8.0 | 50 | | 9.0 | 50 | | 10.0 | 50 | | 11.0 | 50 | | 12.0 | 50 | | 13.0 | 50 | | 14.0 | 50 | | 15.0 | 50 | | 16.0 | 50 | | 17.0 | 50 | | 18.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0067 | 1 | 0.3954 | - | | 0.3356 | 50 | 0.3839 | - | | 0.6711 | 100 | 0.2913 | - | | 1.0067 | 150 | 0.2101 | - | | 1.3423 | 200 | 0.1066 | - | | 1.6779 | 250 | 0.0475 | - | | 2.0134 | 300 | 0.0342 | - | | 2.3490 | 350 | 0.0274 | - | | 2.6846 | 400 | 0.028 | - | | 3.0201 | 450 | 0.029 | - | | 3.3557 | 500 | 0.0291 | - | | 3.6913 | 550 | 0.0258 | - | | 4.0268 | 600 | 0.0202 | - | | 4.3624 | 650 | 0.0085 | - | | 4.6980 | 700 | 0.0124 | - | | 5.0336 | 750 | 0.0039 | - | | 5.3691 | 800 | 0.0089 | - | | 5.7047 | 850 | 0.0063 | - | | 6.0403 | 900 | 0.0034 | - | | 6.3758 | 950 | 0.0046 | - | | 6.7114 | 1000 | 0.008 | - | | 7.0470 | 1050 | 0.0048 | - | | 7.3826 | 1100 | 0.0028 | - | | 7.7181 | 1150 | 0.0042 | - | | 8.0537 | 1200 | 0.0019 | - | | 8.3893 | 1250 | 0.0008 | - | | 8.7248 | 1300 | 0.0004 | - | | 9.0604 | 1350 | 0.0003 | - | | 9.3960 | 1400 | 0.0003 | - | | 9.7315 | 1450 | 0.0002 | - | | 10.0671 | 1500 | 0.0003 | - | | 10.4027 | 1550 | 0.0002 | - | | 10.7383 | 1600 | 0.0001 | - | | 11.0738 | 1650 | 0.0002 | - | | 11.4094 | 1700 | 0.0001 | - | | 11.7450 | 1750 | 0.0001 | - | | 12.0805 | 1800 | 0.0001 | - | | 12.4161 | 1850 | 0.0001 | - | | 12.7517 | 1900 | 0.0001 | - | | 13.0872 | 1950 | 0.0001 | - | | 13.4228 | 2000 | 0.0001 | - | | 13.7584 | 2050 | 0.0001 | - | | 14.0940 | 2100 | 0.0001 | - | | 14.4295 | 2150 | 0.0001 | - | | 14.7651 | 2200 | 0.0001 | - | | 15.1007 | 2250 | 0.0001 | - | | 15.4362 | 2300 | 0.0001 | - | | 15.7718 | 2350 | 0.0001 | - | | 16.1074 | 2400 | 0.0001 | - | | 16.4430 | 2450 | 0.0001 | - | | 16.7785 | 2500 | 0.0001 | - | | 17.1141 | 2550 | 0.0001 | - | | 17.4497 | 2600 | 0.0001 | - | | 17.7852 | 2650 | 0.0001 | - | | 18.1208 | 2700 | 0.0001 | - | | 18.4564 | 2750 | 0.0001 | - | | 18.7919 | 2800 | 0.0001 | - | | 19.1275 | 2850 | 0.0001 | - | | 19.4631 | 2900 | 0.0001 | - | | 19.7987 | 2950 | 0.0001 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```