Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +228 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +66 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: mini1013/master_domain
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- metric
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget:
|
13 |
+
- text: 폭스밸리 프리미엄 자세교정밴드 말린 어깨 목 굽은등 라운드숄더 일자 바른 체형 교정기 M+L 폭스밸리
|
14 |
+
- text: 올그린 무릎 보조기 MCL 니케이지 인대 연골 보호대 수술후 의료용 니케이지_블루_XL 올그린
|
15 |
+
- text: 통풍형 목보호대 쿨링 경추 목디스크 목쿠션 거북목 여성용 hilala115
|
16 |
+
- text: THEPURE 목보호대 거북목 자세교정기 보조기 지지대 봄여름가을겨울 02. UIS-03_S 48CM 선셋
|
17 |
+
- text: 필라델피아 목보호대 SM-001 사이즈선택 경추보호대 릴렉스 목해먹 목스트레칭 목견인기 일자목 디아
|
18 |
+
inference: true
|
19 |
+
model-index:
|
20 |
+
- name: SetFit with mini1013/master_domain
|
21 |
+
results:
|
22 |
+
- task:
|
23 |
+
type: text-classification
|
24 |
+
name: Text Classification
|
25 |
+
dataset:
|
26 |
+
name: Unknown
|
27 |
+
type: unknown
|
28 |
+
split: test
|
29 |
+
metrics:
|
30 |
+
- type: metric
|
31 |
+
value: 0.8887880986937591
|
32 |
+
name: Metric
|
33 |
+
---
|
34 |
+
|
35 |
+
# SetFit with mini1013/master_domain
|
36 |
+
|
37 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
38 |
+
|
39 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
40 |
+
|
41 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
42 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
43 |
+
|
44 |
+
## Model Details
|
45 |
+
|
46 |
+
### Model Description
|
47 |
+
- **Model Type:** SetFit
|
48 |
+
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
|
49 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
50 |
+
- **Maximum Sequence Length:** 512 tokens
|
51 |
+
- **Number of Classes:** 7 classes
|
52 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
53 |
+
<!-- - **Language:** Unknown -->
|
54 |
+
<!-- - **License:** Unknown -->
|
55 |
+
|
56 |
+
### Model Sources
|
57 |
+
|
58 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
59 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
60 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
61 |
+
|
62 |
+
### Model Labels
|
63 |
+
| Label | Examples |
|
64 |
+
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
65 |
+
| 6.0 | <ul><li>'반깁스 반기브스 다리보조기 골절 다리 수술 고정 오른발 ㅡ 기본 모델 올바른해외직구샵'</li><li>'아오스 의료용 무릎보호대 124 MCL [0002]S 왼쪽용 CJONSTYLE'</li><li>'원코어 발보조기 끌림방지 보호대 재활 장비 발목보조기 발지지대 왼발_L 키위프'</li></ul> |
|
66 |
+
| 2.0 | <ul><li>'이화 밸포밴드 팔걸이 견지대 성인용 21061458 M 비앤비(best & BEST)'</li><li>'허리보조기 허리 척추 보호 의료용 AOS-460 여_XXL 링쿠'</li><li>'울트라슬링 어깨보호대 팔걸이 어깨수술 울트라실링 팔깁스 K 타입 디엘아이'</li></ul> |
|
67 |
+
| 5.0 | <ul><li>'전동기립기 하반신 경사 스탠딩 편마비 침대 보조기 수동 높이 조절 + 사륜 + 식탁 쇼핑의품격001'</li><li>'물리치료기계 재활기 가정용 근육 도수 허리 승모근 단일 모델 에오인'</li><li>'환자 전동 침대 의료용 가정용 병원 전동기립기 보조 화이트 97cmx45cmx202cm 연림스토어'</li></ul> |
|
68 |
+
| 0.0 | <ul><li>'미제 재활 고무찰흙 퓨티 (살색/노랑/빨강/초록/파랑) 초록 텔레그라프'</li><li>'손가락 재활 장갑 편마비 손재활 운동 로봇 기구 주황색 미러링된 왼손 M 구구상회'</li><li>'건강누리 말렛핑거스프린트 리필(Mallet Finger Splint Refill) 오픈형7호 단위:팩(5개) (주)엠디오씨'</li></ul> |
|
69 |
+
| 4.0 | <ul><li>'통증바이 남녀공용 바른 자세밴드 3XL (허리둘레 ... 1개 XL (허리둘레 30~32인치) × 1개 이위에'</li><li>'굽은어깨 굽은등 어깨 허리 바른 자세 밴드 라운드숄더 펴주는 XXXL 아이엠어굿맨'</li><li>'(발음교정기 돌돌이) 스카이블루 학생용 영어 국어 발음연습 발음교정 하드(스카이블루) (주)애니덴'</li></ul> |
|
70 |
+
| 1.0 | <ul><li>'[의료기기](반값딜) 넥가디언 거북목 디스크 교정기 쿠션형 견인기 단독 (밤색) 852헤르츠'</li><li>'바른 목 미라클 고급형 보호대 밴드 젬마줌마'</li><li>'[OFLP1Q84]허리E UP 통기성 에어메디칼 견인요 S 27인치이하/FREE sellerhub'</li></ul> |
|
71 |
+
| 3.0 | <ul><li>'도고 렉스타 허벅지형 205 압박용밴드 의료용 압박스타킹 혈액순환 다리붓기 개선 의료기기 중압 (4)265발트임_살색_XL (주)도고메디칼'</li><li>'[GIN383R]종아리 압박밴드 스타킹 다리 간호사 수면 관리 블랙/FREE sellerhub'</li><li>'Duomed Advantage, 15-20 mmHg, 종아리 높이, 오픈 토 Small_Almond 수 스토리(SU STORY)'</li></ul> |
|
72 |
+
|
73 |
+
## Evaluation
|
74 |
+
|
75 |
+
### Metrics
|
76 |
+
| Label | Metric |
|
77 |
+
|:--------|:-------|
|
78 |
+
| **all** | 0.8888 |
|
79 |
+
|
80 |
+
## Uses
|
81 |
+
|
82 |
+
### Direct Use for Inference
|
83 |
+
|
84 |
+
First install the SetFit library:
|
85 |
+
|
86 |
+
```bash
|
87 |
+
pip install setfit
|
88 |
+
```
|
89 |
+
|
90 |
+
Then you can load this model and run inference.
|
91 |
+
|
92 |
+
```python
|
93 |
+
from setfit import SetFitModel
|
94 |
+
|
95 |
+
# Download from the 🤗 Hub
|
96 |
+
model = SetFitModel.from_pretrained("mini1013/master_cate_lh21")
|
97 |
+
# Run inference
|
98 |
+
preds = model("통풍형 목보호대 쿨링 경추 목디스크 목쿠션 거북목 여성용 hilala115")
|
99 |
+
```
|
100 |
+
|
101 |
+
<!--
|
102 |
+
### Downstream Use
|
103 |
+
|
104 |
+
*List how someone could finetune this model on their own dataset.*
|
105 |
+
-->
|
106 |
+
|
107 |
+
<!--
|
108 |
+
### Out-of-Scope Use
|
109 |
+
|
110 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
111 |
+
-->
|
112 |
+
|
113 |
+
<!--
|
114 |
+
## Bias, Risks and Limitations
|
115 |
+
|
116 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
117 |
+
-->
|
118 |
+
|
119 |
+
<!--
|
120 |
+
### Recommendations
|
121 |
+
|
122 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
123 |
+
-->
|
124 |
+
|
125 |
+
## Training Details
|
126 |
+
|
127 |
+
### Training Set Metrics
|
128 |
+
| Training set | Min | Median | Max |
|
129 |
+
|:-------------|:----|:-------|:----|
|
130 |
+
| Word count | 3 | 9.96 | 21 |
|
131 |
+
|
132 |
+
| Label | Training Sample Count |
|
133 |
+
|:------|:----------------------|
|
134 |
+
| 0.0 | 50 |
|
135 |
+
| 1.0 | 50 |
|
136 |
+
| 2.0 | 50 |
|
137 |
+
| 3.0 | 50 |
|
138 |
+
| 4.0 | 50 |
|
139 |
+
| 5.0 | 50 |
|
140 |
+
| 6.0 | 50 |
|
141 |
+
|
142 |
+
### Training Hyperparameters
|
143 |
+
- batch_size: (512, 512)
|
144 |
+
- num_epochs: (20, 20)
|
145 |
+
- max_steps: -1
|
146 |
+
- sampling_strategy: oversampling
|
147 |
+
- num_iterations: 40
|
148 |
+
- body_learning_rate: (2e-05, 2e-05)
|
149 |
+
- head_learning_rate: 2e-05
|
150 |
+
- loss: CosineSimilarityLoss
|
151 |
+
- distance_metric: cosine_distance
|
152 |
+
- margin: 0.25
|
153 |
+
- end_to_end: False
|
154 |
+
- use_amp: False
|
155 |
+
- warmup_proportion: 0.1
|
156 |
+
- seed: 42
|
157 |
+
- eval_max_steps: -1
|
158 |
+
- load_best_model_at_end: False
|
159 |
+
|
160 |
+
### Training Results
|
161 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
162 |
+
|:-------:|:----:|:-------------:|:---------------:|
|
163 |
+
| 0.0182 | 1 | 0.4265 | - |
|
164 |
+
| 0.9091 | 50 | 0.3097 | - |
|
165 |
+
| 1.8182 | 100 | 0.0765 | - |
|
166 |
+
| 2.7273 | 150 | 0.0638 | - |
|
167 |
+
| 3.6364 | 200 | 0.0434 | - |
|
168 |
+
| 4.5455 | 250 | 0.0035 | - |
|
169 |
+
| 5.4545 | 300 | 0.0002 | - |
|
170 |
+
| 6.3636 | 350 | 0.0001 | - |
|
171 |
+
| 7.2727 | 400 | 0.0001 | - |
|
172 |
+
| 8.1818 | 450 | 0.0001 | - |
|
173 |
+
| 9.0909 | 500 | 0.0001 | - |
|
174 |
+
| 10.0 | 550 | 0.0001 | - |
|
175 |
+
| 10.9091 | 600 | 0.0001 | - |
|
176 |
+
| 11.8182 | 650 | 0.0001 | - |
|
177 |
+
| 12.7273 | 700 | 0.0001 | - |
|
178 |
+
| 13.6364 | 750 | 0.0001 | - |
|
179 |
+
| 14.5455 | 800 | 0.0001 | - |
|
180 |
+
| 15.4545 | 850 | 0.0001 | - |
|
181 |
+
| 16.3636 | 900 | 0.0 | - |
|
182 |
+
| 17.2727 | 950 | 0.0 | - |
|
183 |
+
| 18.1818 | 1000 | 0.0 | - |
|
184 |
+
| 19.0909 | 1050 | 0.0001 | - |
|
185 |
+
| 20.0 | 1100 | 0.0 | - |
|
186 |
+
|
187 |
+
### Framework Versions
|
188 |
+
- Python: 3.10.12
|
189 |
+
- SetFit: 1.1.0.dev0
|
190 |
+
- Sentence Transformers: 3.1.1
|
191 |
+
- Transformers: 4.46.1
|
192 |
+
- PyTorch: 2.4.0+cu121
|
193 |
+
- Datasets: 2.20.0
|
194 |
+
- Tokenizers: 0.20.0
|
195 |
+
|
196 |
+
## Citation
|
197 |
+
|
198 |
+
### BibTeX
|
199 |
+
```bibtex
|
200 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
201 |
+
doi = {10.48550/ARXIV.2209.11055},
|
202 |
+
url = {https://arxiv.org/abs/2209.11055},
|
203 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
204 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
205 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
206 |
+
publisher = {arXiv},
|
207 |
+
year = {2022},
|
208 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
209 |
+
}
|
210 |
+
```
|
211 |
+
|
212 |
+
<!--
|
213 |
+
## Glossary
|
214 |
+
|
215 |
+
*Clearly define terms in order to be accessible across audiences.*
|
216 |
+
-->
|
217 |
+
|
218 |
+
<!--
|
219 |
+
## Model Card Authors
|
220 |
+
|
221 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
222 |
+
-->
|
223 |
+
|
224 |
+
<!--
|
225 |
+
## Model Card Contact
|
226 |
+
|
227 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
228 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mini1013/master_item_lh",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"tokenizer_class": "BertTokenizer",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.46.1",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.1",
|
4 |
+
"transformers": "4.46.1",
|
5 |
+
"pytorch": "2.4.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
+
"labels": null
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56b9e9f7c9b6d36cbc839a2e110cbdf4e338ecc71147468bb8492161caa98de9
|
3 |
+
size 442494816
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe42aa60195c5223a6b3b1aa26ceb347060a56912b964b18558700f618d60a41
|
3 |
+
size 43935
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[CLS]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[PAD]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": false,
|
49 |
+
"eos_token": "[SEP]",
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"max_length": 512,
|
52 |
+
"model_max_length": 512,
|
53 |
+
"never_split": null,
|
54 |
+
"pad_to_multiple_of": null,
|
55 |
+
"pad_token": "[PAD]",
|
56 |
+
"pad_token_type_id": 0,
|
57 |
+
"padding_side": "right",
|
58 |
+
"sep_token": "[SEP]",
|
59 |
+
"stride": 0,
|
60 |
+
"strip_accents": null,
|
61 |
+
"tokenize_chinese_chars": true,
|
62 |
+
"tokenizer_class": "BertTokenizer",
|
63 |
+
"truncation_side": "right",
|
64 |
+
"truncation_strategy": "longest_first",
|
65 |
+
"unk_token": "[UNK]"
|
66 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|