mini1013 commited on
Commit
667c54d
1 Parent(s): a08e88f

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,248 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - metric
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 회전 걸레 I형 받이 통돌이 청소기 밀대 막대 물 밀대걸레 추가구매시 배송비 스쿠라
14
+ - text: 사선컷팅 돌돌이 테이프클리너 리필 15롤(3롤x5봉지) MinSellAmount 롯데 아이몰
15
+ - text: 청소 슬리퍼 층간소음 발 걸레 거실화 극세사 신발 바닥 탈부착 리필 대형 빅사이즈 청소슬리퍼-와플(여성용)블루 다소니
16
+ - text: 눌러주는 압축 쓰레기통 공간 절약 종량제 휴지통 대형 화장실 25리터 사각 화이트 다루솔
17
+ - text: 국산 플라이토 실리콘 클라우드 미니 스퀴지 15cm 민트 골드깨비
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: metric
31
+ value: 0.9071537290715372
32
+ name: Metric
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 11 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 0.0 | <ul><li>'무지개 극세사 손걸레 S 주방 청소 경편 걸레 타올 02 바둑 이지 걸레_30x40 (파랑) 플렌티'</li><li>'폴리에스터 무진보루 크린룸와이퍼 1bag INOX-3140(보급형) INOX-3140(보급형) 미래유통'</li><li>'모던 리필 탈부착형 청소슬리퍼 거실화 실내화 모던코코아 바보사랑♥'</li></ul> |
66
+ | 4.0 | <ul><li>'매직 펄프 청소기 그레이 밀대 바닥 물 마포 걸레 스펀지 추가 매직펄프 리필용 씨엔 주식회사'</li><li>'3M621 퀵스위퍼 극세사 융 리필패드 43x14cm 커플EH'</li><li>'청소 밀대 걸레 청소기+극세사 패드 5장/ 리필 대 물걸레 밀대패드 마대 마포 용품 도구 C03) 밀대 그린+스트라이프 3장 (주)이오스트'</li></ul> |
67
+ | 8.0 | <ul><li>'스카트 테이프클리너 특대형 대형 중형 번들팩 리필팩 테이프클리너_대형 리필팩 3P 해피하우스70'</li><li>'고로고로 카페트 침구용 초강력 리필 6롤 하이그레이드 오렌지컷 제이에스지'</li><li>'스탠드형 테이프 클리너 리필10개입 동그라미'</li></ul> |
68
+ | 9.0 | <ul><li>'추가밀대봉(발로 밟는 통돌이용 오수분리용) EVE8 추가봉(오수분리용) 에브리씽굿'</li><li>'퀸마루 멀티맙 페달청소기 스핀 밀대 페달 청소기 페달식통 시공간'</li><li>'무선청소기 V6 호환 물걸레 헤드 습식 패드 단독상품 하늘시스템'</li></ul> |
69
+ | 6.0 | <ul><li>'바닥청소솔 밀대 청소솔 브러쉬 세트 욕실 주방 화장실 계단 식당 목욕탕 업소용 찌든때 10_최고급 바닥솔(대형) (A427) 크린메이트'</li><li>'바이칸 소프트 인테리어브러쉬 5552504 자동차 실내브러쉬 주식회사 충성'</li><li>'3M 청소용 브러쉬 타일 및 틈새 브러쉬(1686) 토탈마트'</li></ul> |
70
+ | 1.0 | <ul><li>'베네코 [홈케어 풀패키지] 욕실주방 셀프나노코팅 싱크대상판 타일 대리석 화장실코팅제 30평대 (주)포이즈'</li><li>'가제트 지우개 청소기 GEC3000 블루 책상 클리너 위드피플즈'</li><li>'일동엘앤비 데일리워터 도톰한 일회용 물걸레청소포 특대형 25매 10팩 동의합니다 그랩유어스'</li></ul> |
71
+ | 3.0 | <ul><li>'3M 먼지떨이 미세먼지 흡착 먼지털이개 (핸들+리필 6개) / 스카치브라이트 핸들 리필 6개 432118 A. 다용도_2. 롱핸들 + 리필 6개 커머스디'</li><li>'틈새 먼지제거 청소 막대 스틱 쇼파밑 침대 밑 냉장고 위 청소 도구 소품 틈새 먼지 청소 막대 핑크 메리트샵'</li><li>'강아지 고양이 털 제거 반영구 털제거기 B타입 챈지윙몰03'</li></ul> |
72
+ | 7.0 | <ul><li>'스퀴즈 욕실 미니 핸드 스퀴지 화장실 물기제거 퍼니파니'</li><li>"스카트 유리 거울 세정 티슈 30매x4개 올바른'"</li><li>'홈스타 싱크대 배수관 클리너, 1개 + 욕실 하수구 클리너, 1개 + 세면대 배수관 클리너, 1개+ (파워액션 락스, 1L, 1개) 구분 : 홈스타 싱크대 배수관 클리너, 1개 + 욕실 하수구 클리너, 1개 + 세면대 배수관 클리너, 1개 + 증정(락스로 부탁해, 1L, 1개) 슈팅배송'</li></ul> |
73
+ | 10.0 | <ul><li>'[OCB7]뚜껑있는 압축휴지통 10리터 20리터 10리터-그레이 아이넷파'</li><li>'SQS673418스텐레스 신우 페달휴지통 5L 더블유케이알'</li><li>'미니 홀렌 가정용 잔반통 기저귀휴지통 바스켓 휴지통 다용도 냄새차단 아이보리 륜은컴퍼니'</li></ul> |
74
+ | 2.0 | <ul><li>'웰 소형 매직크리너 3x7x11cm 포장10개 독일매직블럭 블록 청소용품 폼 에이원마켓'</li><li>'[신세계 핑]올가휴 내추럴 매직팝업 스펀지 1+1세트(100개) 신세계몰'</li><li>'198654 다모아 클리너 싱글 구성 (본체1개+PVA스펀지2개) 제이디무역'</li></ul> |
75
+ | 5.0 | <ul><li>'외각쓰레받이 삼태기 새롬이쓰레받이 업소용쓰레받이 외부쓰레받이 실외쓰레받이 2_외각 쓰레받이 바른상회'</li><li>'폴드 업 비세트 신규D'</li><li>'로엘 알루미늄봉 도로비 중 개량비 관공서 쓸비 제설 미니빗자루 마당비 실내용빗자루 호스용빗자루 싸리비 바른상회'</li></ul> |
76
+
77
+ ## Evaluation
78
+
79
+ ### Metrics
80
+ | Label | Metric |
81
+ |:--------|:-------|
82
+ | **all** | 0.9072 |
83
+
84
+ ## Uses
85
+
86
+ ### Direct Use for Inference
87
+
88
+ First install the SetFit library:
89
+
90
+ ```bash
91
+ pip install setfit
92
+ ```
93
+
94
+ Then you can load this model and run inference.
95
+
96
+ ```python
97
+ from setfit import SetFitModel
98
+
99
+ # Download from the 🤗 Hub
100
+ model = SetFitModel.from_pretrained("mini1013/master_cate_lh26")
101
+ # Run inference
102
+ preds = model("국산 플라이토 실리콘 클라우드 미니 스퀴지 15cm 민트 골드깨비")
103
+ ```
104
+
105
+ <!--
106
+ ### Downstream Use
107
+
108
+ *List how someone could finetune this model on their own dataset.*
109
+ -->
110
+
111
+ <!--
112
+ ### Out-of-Scope Use
113
+
114
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
115
+ -->
116
+
117
+ <!--
118
+ ## Bias, Risks and Limitations
119
+
120
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
121
+ -->
122
+
123
+ <!--
124
+ ### Recommendations
125
+
126
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
127
+ -->
128
+
129
+ ## Training Details
130
+
131
+ ### Training Set Metrics
132
+ | Training set | Min | Median | Max |
133
+ |:-------------|:----|:--------|:----|
134
+ | Word count | 3 | 10.5873 | 42 |
135
+
136
+ | Label | Training Sample Count |
137
+ |:------|:----------------------|
138
+ | 0.0 | 50 |
139
+ | 1.0 | 50 |
140
+ | 2.0 | 50 |
141
+ | 3.0 | 50 |
142
+ | 4.0 | 50 |
143
+ | 5.0 | 50 |
144
+ | 6.0 | 50 |
145
+ | 7.0 | 50 |
146
+ | 8.0 | 50 |
147
+ | 9.0 | 50 |
148
+ | 10.0 | 50 |
149
+
150
+ ### Training Hyperparameters
151
+ - batch_size: (512, 512)
152
+ - num_epochs: (20, 20)
153
+ - max_steps: -1
154
+ - sampling_strategy: oversampling
155
+ - num_iterations: 40
156
+ - body_learning_rate: (2e-05, 2e-05)
157
+ - head_learning_rate: 2e-05
158
+ - loss: CosineSimilarityLoss
159
+ - distance_metric: cosine_distance
160
+ - margin: 0.25
161
+ - end_to_end: False
162
+ - use_amp: False
163
+ - warmup_proportion: 0.1
164
+ - seed: 42
165
+ - eval_max_steps: -1
166
+ - load_best_model_at_end: False
167
+
168
+ ### Training Results
169
+ | Epoch | Step | Training Loss | Validation Loss |
170
+ |:-------:|:----:|:-------------:|:---------------:|
171
+ | 0.0116 | 1 | 0.4009 | - |
172
+ | 0.5814 | 50 | 0.3271 | - |
173
+ | 1.1628 | 100 | 0.1934 | - |
174
+ | 1.7442 | 150 | 0.0971 | - |
175
+ | 2.3256 | 200 | 0.074 | - |
176
+ | 2.9070 | 250 | 0.0704 | - |
177
+ | 3.4884 | 300 | 0.0402 | - |
178
+ | 4.0698 | 350 | 0.0309 | - |
179
+ | 4.6512 | 400 | 0.023 | - |
180
+ | 5.2326 | 450 | 0.0112 | - |
181
+ | 5.8140 | 500 | 0.0037 | - |
182
+ | 6.3953 | 550 | 0.0009 | - |
183
+ | 6.9767 | 600 | 0.0002 | - |
184
+ | 7.5581 | 650 | 0.0003 | - |
185
+ | 8.1395 | 700 | 0.0002 | - |
186
+ | 8.7209 | 750 | 0.0001 | - |
187
+ | 9.3023 | 800 | 0.0001 | - |
188
+ | 9.8837 | 850 | 0.0001 | - |
189
+ | 10.4651 | 900 | 0.0001 | - |
190
+ | 11.0465 | 950 | 0.0001 | - |
191
+ | 11.6279 | 1000 | 0.0001 | - |
192
+ | 12.2093 | 1050 | 0.0001 | - |
193
+ | 12.7907 | 1100 | 0.0002 | - |
194
+ | 13.3721 | 1150 | 0.0001 | - |
195
+ | 13.9535 | 1200 | 0.0001 | - |
196
+ | 14.5349 | 1250 | 0.0001 | - |
197
+ | 15.1163 | 1300 | 0.0001 | - |
198
+ | 15.6977 | 1350 | 0.0001 | - |
199
+ | 16.2791 | 1400 | 0.0001 | - |
200
+ | 16.8605 | 1450 | 0.0001 | - |
201
+ | 17.4419 | 1500 | 0.0001 | - |
202
+ | 18.0233 | 1550 | 0.0001 | - |
203
+ | 18.6047 | 1600 | 0.0001 | - |
204
+ | 19.1860 | 1650 | 0.0001 | - |
205
+ | 19.7674 | 1700 | 0.0 | - |
206
+
207
+ ### Framework Versions
208
+ - Python: 3.10.12
209
+ - SetFit: 1.1.0.dev0
210
+ - Sentence Transformers: 3.1.1
211
+ - Transformers: 4.46.1
212
+ - PyTorch: 2.4.0+cu121
213
+ - Datasets: 2.20.0
214
+ - Tokenizers: 0.20.0
215
+
216
+ ## Citation
217
+
218
+ ### BibTeX
219
+ ```bibtex
220
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
221
+ doi = {10.48550/ARXIV.2209.11055},
222
+ url = {https://arxiv.org/abs/2209.11055},
223
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
224
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
225
+ title = {Efficient Few-Shot Learning Without Prompts},
226
+ publisher = {arXiv},
227
+ year = {2022},
228
+ copyright = {Creative Commons Attribution 4.0 International}
229
+ }
230
+ ```
231
+
232
+ <!--
233
+ ## Glossary
234
+
235
+ *Clearly define terms in order to be accessible across audiences.*
236
+ -->
237
+
238
+ <!--
239
+ ## Model Card Authors
240
+
241
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
242
+ -->
243
+
244
+ <!--
245
+ ## Model Card Contact
246
+
247
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
248
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_lh",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.46.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.46.1",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85842ae96b6df69fa47ee8ab98e829fc4b436d89b827a38a2120494194bd8a69
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba5821207a07838077c961f17f7adc80fd1ada731c227f013d9999f6fcebb4aa
3
+ size 68575
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff