--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 회전 걸레 I형 받이 통돌이 청소기 밀대 막대 물 밀대걸레 추가구매시 배송비 스쿠라 - text: 사선컷팅 돌돌이 테이프클리너 리필 15롤(3롤x5봉지) MinSellAmount 롯데 아이몰 - text: 청소 슬리퍼 층간소음 발 걸레 거실화 극세사 신발 바닥 탈부착 리필 대형 빅사이즈 청소슬리퍼-와플(여성용)블루 다소니 - text: 눌러주는 압축 쓰레기통 공간 절약 종량제 휴지통 대형 화장실 25리터 사각 화이트 다루솔 - text: 국산 플라이토 실리콘 클라우드 미니 스퀴지 15cm 민트 골드깨비 inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.9071537290715372 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 11 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0.0 | | | 4.0 | | | 8.0 | | | 9.0 | | | 6.0 | | | 1.0 | | | 3.0 | | | 7.0 | | | 10.0 | | | 2.0 | | | 5.0 | | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.9072 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_lh26") # Run inference preds = model("국산 플라이토 실리콘 클라우드 미니 스퀴지 15cm 민트 골드깨비") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 3 | 10.5873 | 42 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | | 2.0 | 50 | | 3.0 | 50 | | 4.0 | 50 | | 5.0 | 50 | | 6.0 | 50 | | 7.0 | 50 | | 8.0 | 50 | | 9.0 | 50 | | 10.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0116 | 1 | 0.4009 | - | | 0.5814 | 50 | 0.3271 | - | | 1.1628 | 100 | 0.1934 | - | | 1.7442 | 150 | 0.0971 | - | | 2.3256 | 200 | 0.074 | - | | 2.9070 | 250 | 0.0704 | - | | 3.4884 | 300 | 0.0402 | - | | 4.0698 | 350 | 0.0309 | - | | 4.6512 | 400 | 0.023 | - | | 5.2326 | 450 | 0.0112 | - | | 5.8140 | 500 | 0.0037 | - | | 6.3953 | 550 | 0.0009 | - | | 6.9767 | 600 | 0.0002 | - | | 7.5581 | 650 | 0.0003 | - | | 8.1395 | 700 | 0.0002 | - | | 8.7209 | 750 | 0.0001 | - | | 9.3023 | 800 | 0.0001 | - | | 9.8837 | 850 | 0.0001 | - | | 10.4651 | 900 | 0.0001 | - | | 11.0465 | 950 | 0.0001 | - | | 11.6279 | 1000 | 0.0001 | - | | 12.2093 | 1050 | 0.0001 | - | | 12.7907 | 1100 | 0.0002 | - | | 13.3721 | 1150 | 0.0001 | - | | 13.9535 | 1200 | 0.0001 | - | | 14.5349 | 1250 | 0.0001 | - | | 15.1163 | 1300 | 0.0001 | - | | 15.6977 | 1350 | 0.0001 | - | | 16.2791 | 1400 | 0.0001 | - | | 16.8605 | 1450 | 0.0001 | - | | 17.4419 | 1500 | 0.0001 | - | | 18.0233 | 1550 | 0.0001 | - | | 18.6047 | 1600 | 0.0001 | - | | 19.1860 | 1650 | 0.0001 | - | | 19.7674 | 1700 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```