master_cate_lh5 / README.md
mini1013's picture
Push model using huggingface_hub.
8e7236c verified
|
raw
history blame
7.49 kB
metadata
base_model: mini1013/master_domain
library_name: setfit
metrics:
  - metric
pipeline_tag: text-classification
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
widget:
  - text: 한양 충전식 온수 찜질기 온열 BEST 벨트형 전기 찜질팩  허리  어깨 복대 핫팩 벨트형_보라색 구름모양 주식회사 원삼메디
  - text: '충전식 온수 찜질기 온열 전기 찜질팩 IVB-D1000 핑크 '
  - text: 메이스 보온 물주머니 찜질팩 온열 허리  복부 온수 온찜질 핫팩 보온주머니 2L 보온물주머니_1L 브라운 메이스코리아
  - text: 슈슈엔젤 연두  찜질팩 핫팩 주머니 부모님 선물 1_선택7 꽃팥찜질팩 슈슈엔젤123
  - text: 온감테라피 온열  마스크 5 x 5 / 컨디션 케어 1.온감테라피 온열  마스크 5매입 x 5 라이온코리아 주식회사
inference: true
model-index:
  - name: SetFit with mini1013/master_domain
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: metric
            value: 0.9710382513661202
            name: Metric

SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
1.0
  • '파쉬 독일 보온 물주머니 노커버 기본형 커버 체크 핑크네이비 주식회사 하이유로'
  • '파쉬 독일 보온 물주머니 노커버 기본형 3.노커버 기본형 레드 주식회사 하이유로'
  • '꼼띠아 국산 프리미엄 온열 황토 순면 냉 온 어깨 찜질기 찜질팩 목 등 찜질 쿨매트 허리찜질기(그레이) BH스토어'
0.0
  • '한양 온수찜질기 밍크 파우치 회색_SET 밍크파우치+복대 한양의료기'
  • '한양 온수찜질기 밍크 파우치 블랙_밍크 발찜질기 한양의료기'
  • '게르마늄 전기찜질기 뜸질기 찜질기 찜질팩 전기메트 허리 배 무릎 찜질 MinSellAmount 스마일배송'

Evaluation

Metrics

Label Metric
all 0.9710

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_lh5")
# Run inference
preds = model("충전식 온수 찜질기 온열 전기 찜질팩 IVB-D1000 핑크 ")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 4 10.73 20
Label Training Sample Count
0.0 50
1.0 50

Training Hyperparameters

  • batch_size: (512, 512)
  • num_epochs: (20, 20)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 40
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0625 1 0.3748 -
3.125 50 0.0002 -
6.25 100 0.0 -
9.375 150 0.0 -
12.5 200 0.0 -
15.625 250 0.0 -
18.75 300 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0.dev0
  • Sentence Transformers: 3.1.1
  • Transformers: 4.46.1
  • PyTorch: 2.4.0+cu121
  • Datasets: 2.20.0
  • Tokenizers: 0.20.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}