mini1013 commited on
Commit
1fe4d15
·
verified ·
1 Parent(s): 6c0b2d5

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,230 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: 피클볼라켓 가족용 나무 패들 초보자 라켓 메쉬 캐리 백 스포츠/레저>수련용품>기타수련용품
9
+ - text: 미즈노 복싱화 레슬링화 권투화 피니셔 미드 FINISHER MID 스포츠/레저>수련용품>수련화
10
+ - text: 프랭클린 스포츠 사이즈 콘홀 백 - 8 프리미엄 6 헤비 듀티 더블 스티치 캔버스 스포츠/레저>수련용품>기타수련용품
11
+ - text: 미즈노 복싱화 권투화 이지 스펙트라 37 플래시 그린 X 05 테두리 BM518 스포츠/레저>수련용품>수련화
12
+ - text: 주짓수 경량 도복 상하세트 훈련 남성 여성 통기성 스포츠/레저>수련용품>무도복
13
+ metrics:
14
+ - accuracy
15
+ pipeline_tag: text-classification
16
+ library_name: setfit
17
+ inference: true
18
+ base_model: mini1013/master_domain
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: accuracy
31
+ value: 1.0
32
+ name: Accuracy
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 5 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 4.0 | <ul><li>'레슬링화 신발 남성 권투화 전문 훈련 복싱용품 복싱 남녀공용 트레이닝 스포츠/레저>수련용품>수련화'</li><li>'아디다스 복싱 스피덱스18 복싱화 FZ5308 스포츠/레저>수련용품>수련화'</li><li>'여성 복싱화 킥복싱 신발 권투화 운동화-514 스포츠/레저>수련용품>수련화'</li></ul> |
66
+ | 0.0 | <ul><li>'HK 조립식송판 태권도 격파판 격투기 용품 스포츠/레저 > 수련용품 > 격파용품'</li><li>'격파 용품 나무 격파판 나무송판 행사용 태권도 격파용 9mm 송판 50장묶음 스포츠/레저 > 수련용품 > 격파용품'</li><li>'무토 중급자용 플라스틱 송판 62kg 스포츠/레저>수련용품>격파용품'</li></ul> |
67
+ | 3.0 | <ul><li>'케이네트워크 컨텐더 시합용 주짓수도복 펄위브 도복 CJW-554WR 스포츠/레저>수련용품>무도복'</li><li>'주짓수 도복 기모노 훈련복 어린이 성인 여성 스포츠/레저>수련용품>무도복'</li><li>'무에타이 트렁크 쇼츠 바지 격투기 UFC 권투 팬츠 파이트 MMA 킥복싱 반바지 스포츠/레저>수련용품>무도복'</li></ul> |
68
+ | 1.0 | <ul><li>'전동 포일보드 방수 고출력 이포일 하이드로 윈드 스포츠/레저>수련용품>기타수련용품'</li><li>'남성과 여성을위한 전문 승마 초박형 속건 바지 흰색 경쟁 훈련 장비 실리콘 스포츠/레저>수련용품>기타수련용품'</li><li>'Weaver 가죽 벨트 블랭크 스냅 구멍 스포츠/레저>수련용품>기타수련용품'</li></ul> |
69
+ | 2.0 | <ul><li>'다오코리아 유도 태권도 주짓수 검정띠 자수포함 품띠 검은띠 유단자띠 스포츠/레저 > 수련용품 > 띠/벨트'</li><li>'아디다스 벨트 태권도 유급자 색 띠 스포츠/레저 > 수련용품 > 띠/벨트'</li><li>'아디다스 유도벨트 띠 선수용띠 국가대표 실업팀 대회띠 유도선수용 블랙밸트 스포츠/레저 > 수련용품 > 띠/벨트'</li></ul> |
70
+
71
+ ## Evaluation
72
+
73
+ ### Metrics
74
+ | Label | Accuracy |
75
+ |:--------|:---------|
76
+ | **all** | 1.0 |
77
+
78
+ ## Uses
79
+
80
+ ### Direct Use for Inference
81
+
82
+ First install the SetFit library:
83
+
84
+ ```bash
85
+ pip install setfit
86
+ ```
87
+
88
+ Then you can load this model and run inference.
89
+
90
+ ```python
91
+ from setfit import SetFitModel
92
+
93
+ # Download from the 🤗 Hub
94
+ model = SetFitModel.from_pretrained("mini1013/master_cate_sl15")
95
+ # Run inference
96
+ preds = model("주짓수 경량 도복 상하세트 훈련 남성 여성 통기성 스포츠/레저>수련용품>무도복")
97
+ ```
98
+
99
+ <!--
100
+ ### Downstream Use
101
+
102
+ *List how someone could finetune this model on their own dataset.*
103
+ -->
104
+
105
+ <!--
106
+ ### Out-of-Scope Use
107
+
108
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
109
+ -->
110
+
111
+ <!--
112
+ ## Bias, Risks and Limitations
113
+
114
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
115
+ -->
116
+
117
+ <!--
118
+ ### Recommendations
119
+
120
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
121
+ -->
122
+
123
+ ## Training Details
124
+
125
+ ### Training Set Metrics
126
+ | Training set | Min | Median | Max |
127
+ |:-------------|:----|:-------|:----|
128
+ | Word count | 3 | 9.7851 | 20 |
129
+
130
+ | Label | Training Sample Count |
131
+ |:------|:----------------------|
132
+ | 0.0 | 9 |
133
+ | 1.0 | 70 |
134
+ | 2.0 | 9 |
135
+ | 3.0 | 70 |
136
+ | 4.0 | 70 |
137
+
138
+ ### Training Hyperparameters
139
+ - batch_size: (256, 256)
140
+ - num_epochs: (30, 30)
141
+ - max_steps: -1
142
+ - sampling_strategy: oversampling
143
+ - num_iterations: 50
144
+ - body_learning_rate: (2e-05, 1e-05)
145
+ - head_learning_rate: 0.01
146
+ - loss: CosineSimilarityLoss
147
+ - distance_metric: cosine_distance
148
+ - margin: 0.25
149
+ - end_to_end: False
150
+ - use_amp: False
151
+ - warmup_proportion: 0.1
152
+ - l2_weight: 0.01
153
+ - seed: 42
154
+ - eval_max_steps: -1
155
+ - load_best_model_at_end: False
156
+
157
+ ### Training Results
158
+ | Epoch | Step | Training Loss | Validation Loss |
159
+ |:-------:|:----:|:-------------:|:---------------:|
160
+ | 0.0222 | 1 | 0.4899 | - |
161
+ | 1.1111 | 50 | 0.4031 | - |
162
+ | 2.2222 | 100 | 0.0374 | - |
163
+ | 3.3333 | 150 | 0.0 | - |
164
+ | 4.4444 | 200 | 0.0 | - |
165
+ | 5.5556 | 250 | 0.0 | - |
166
+ | 6.6667 | 300 | 0.0 | - |
167
+ | 7.7778 | 350 | 0.0 | - |
168
+ | 8.8889 | 400 | 0.0 | - |
169
+ | 10.0 | 450 | 0.0 | - |
170
+ | 11.1111 | 500 | 0.0 | - |
171
+ | 12.2222 | 550 | 0.0 | - |
172
+ | 13.3333 | 600 | 0.0 | - |
173
+ | 14.4444 | 650 | 0.0 | - |
174
+ | 15.5556 | 700 | 0.0 | - |
175
+ | 16.6667 | 750 | 0.0 | - |
176
+ | 17.7778 | 800 | 0.0 | - |
177
+ | 18.8889 | 850 | 0.0 | - |
178
+ | 20.0 | 900 | 0.0 | - |
179
+ | 21.1111 | 950 | 0.0 | - |
180
+ | 22.2222 | 1000 | 0.0 | - |
181
+ | 23.3333 | 1050 | 0.0 | - |
182
+ | 24.4444 | 1100 | 0.0 | - |
183
+ | 25.5556 | 1150 | 0.0 | - |
184
+ | 26.6667 | 1200 | 0.0 | - |
185
+ | 27.7778 | 1250 | 0.0 | - |
186
+ | 28.8889 | 1300 | 0.0 | - |
187
+ | 30.0 | 1350 | 0.0 | - |
188
+
189
+ ### Framework Versions
190
+ - Python: 3.10.12
191
+ - SetFit: 1.1.0
192
+ - Sentence Transformers: 3.3.1
193
+ - Transformers: 4.44.2
194
+ - PyTorch: 2.2.0a0+81ea7a4
195
+ - Datasets: 3.2.0
196
+ - Tokenizers: 0.19.1
197
+
198
+ ## Citation
199
+
200
+ ### BibTeX
201
+ ```bibtex
202
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
203
+ doi = {10.48550/ARXIV.2209.11055},
204
+ url = {https://arxiv.org/abs/2209.11055},
205
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
206
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
207
+ title = {Efficient Few-Shot Learning Without Prompts},
208
+ publisher = {arXiv},
209
+ year = {2022},
210
+ copyright = {Creative Commons Attribution 4.0 International}
211
+ }
212
+ ```
213
+
214
+ <!--
215
+ ## Glossary
216
+
217
+ *Clearly define terms in order to be accessible across audiences.*
218
+ -->
219
+
220
+ <!--
221
+ ## Model Card Authors
222
+
223
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
224
+ -->
225
+
226
+ <!--
227
+ ## Model Card Contact
228
+
229
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
230
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_sl_org_gtcate",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68fc81b54d272e164b9606d6f6b81a06fda14b2646d19cbceaed178df17da68b
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5179212da43d4256f94604d450df56de9fb3c4b37efb77a32ebf79c450b2307
3
+ size 31615
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff